Arbadell Computer
by Shane Avery

1. Introduction

Arbadell is a computer designed completely from scratch. The purpose of the
project is to design a complete computer system to test and develop the skills acquired
as a computer engineering graduate at Cal Poly. Also, the project will provide a way to
show my skills to an interviewer. Arbadell contains a CPU, RAM, loader, chipset,
keyboard input, RS232 interface, and VGA out. The chipset will be design by Elohim
Holguin as her senior project.

2. CPU

The CPU will be a CISC like computer. Implementation of the CPU will be done
in Verilog. A Xilinx FPGA was chosen for the CPU for a few reasons. First, Xilinx
development software is free. | managed to get a hold of the student edition from
Professor Sandiage’s book. Secondly, | managed to find a development kit made by
Xess that contained a Xilinx chip.

The design of the CPU contains an instruction register to hold the current
instruction, an alu (arithmetic and logic unit) that performs add, logical and, logical or,
invert, increment, and decrement, a PC (program counter), a stack, a scratch register, a
status register, and a control unit.

The CPU is an 8 bit CPU (meaning it has an 8 bit data bus). The address bus is
16 bits. Therefore the CPU can access 65536 bytes of data. The CPU is designed to be
run at 4 MHz. Upon reset the CPU will begin executing at address 0x0000. There are 24
instructions. Their names, machine code, and a short description are as follows.

Note: Literal values are 8 bits and memory addresses are 16 bits.

movel literal value 0x00 move the literal value into the scratch
register
movem memory address 0x01 move the byte in the memory address

into the scratch register

moves memory address 0x02 move the value of the scratch register
into the memory address location

inv 0x03 invert the value of the scratch register

inc 0x04 increments the value of the scratch
register

dec 0x05 decrements the value of the scratch
register

shiftr 0x06 logical shift right of the scratch register

shiftl 0x07 logical shift left of the scratch register

addl

andl

orl

addm

andm

orm

call

bra

braz

ret

reti

iorecv

iosend

setie

literal value

literal value

literal value

memory address

memory address

memory address

memory address

memory address

memory address

literal value

literal value

literal value

0x08

0x09

0Ox0a

0x0b

0x0c

0x0d

0x0e

OxOf

0x10

0x11

0x12

0x13

0x14

0x15

add the literal value to the value of the
scratch register

and the literal value to the value of the
scratch register

or the literal value to the value of the
scratch register

add the value in the memory address to
the value of the scratch register

and the value in the memory address to
the value of the scratch register

or the value in the memory address to
the value of the scratch register

calls the subroutine at memory address
and the current address will be pushed
onto the stack for a return

branches to memory address

branches to memory address if the zero
bit has been set else just continues to
next instruction

return from call; will pop of the next
address on stack and put it in the PC

return from interrupt

I/0O receive from chipset; the value
will determine the input received

I/0 send from chipset; the value will
determine what the chipset will do with
data given to it

this will enable interrupts; keyboard
interrupt enable will be the value of the
first bit; serial interrupt enable will be the
value of the second bit; the interrupt will

be enabled if the bit is high and cleared
if low; all other values will be ignored

tio memory address 0x16 test interruptO(keyboard) and branch to
memory address if set

til memory address 0x17 test interruptl(serial in) and branch to
memory address if set

note: All arithmetic and logical operations store the result into the scratch register.

Interrupts will be handled as follows. The chipset will assert an interrupt pin when
it receives data from either the keyboard or serial port. If the interrupts are enabled the
CPU will finish its current instruction, save the current memory address and branch to
OxfffO if a keyboard interrupt and Oxfff8 for a serial interrupt. The CPU will then continue
executing instructions and will not interrupt again even if an interrupt pin is asserted by
the chipset until the reti instruction has been executed. Alternatively, the user may poll
for interrupts using the ti0 and til instructions. However, it is strongly recommended the
polling not be used because the chipset will block until interrupts are serviced.

3. Chipset

The chipset was developed by Elohim Holguin as a senior project and was
implemented with a PIC microcontroller. It will be involved in most input and outputs to
the Arbadell computer. The chipset will be responsible for keyboard in, serial in, serial
out, passing data to the video system, and latching the LED array. Whenever the
chipset happens to receive a byte from serial or the keyboard it will interrupt the CPU.
The interrupt cannot be cleared until the CPU requests to service the interrupt from the
chipset.

The communications protocol between the CPU and chipset is a simple two
signal protocol. The chipset will look at the IOADDR pin that comes from the CPU.
When that pin is asserted the chipset will look at the lower three address lines to
determine the action to take. The lower three bits and their action is described as
follows.

0x00 keyboard in

0x01 serial in

0x02 serial out

0x03 video out

0x04 latch LED array

0x07 asks the chipset to respond with Oxa5

The last action 0x07 is way for the CPU to determine if the chipset is there and
responding. It is meant to be used during the POST (power on self test).

Once IOADDR is asserted the chipset will perform the action and then assert
ACK. This will tell the CPU that the operation is complete. If the chipset has put a byte
on the data bus the CPU will grab it at this time. The CPU will then clear the IOADDR
line telling the chipset that the CPU has received the ACK and, if applicable, has
grabbed the byte from the data bus. The chipset in turn will clear ACK and the process

will start over. The CPU cannot set the IOADDR line again until the chipset has cleared
ACK.

By default the chipset will always have the data bus as input until the IOADDR
line is asserted the action is keyboard in, serial in, or respond with Oxa5. Once IOADDR
has been cleared the chipset must then switch to input on the data bus before clearing
ACK.

4. RAM

Main system memory is a CMOS NVSRAM part. This is so data can be retained
even after powerdown.
5. Loader

Somehow the memory has to be initially loaded. An AVR microcontroller will load
the RAM with the programs and data before turning the CPU loose on the RAM. The
AVR will have an RS232 interface and will connect to the PC via the serial port. The
AVR will then be able to accept commands like a dummy terminal. Commands will allow
users to load specified block of RAM, read specified blocks of RAM, and pull the CPU
out of reset to execute the instructions in RAM.

6. Assembler

The assembler will be written in C. A more detailed document on assembler
syntax and usage will be included in the zip file along with the source code.
7. VGA Chip

It would be too complicated to make the chipset directly control the VGA
interface. Instead there will be separate VGA chips. The VGA chips will be a CPLD
written in verilog and a PIC microcontroller. It will accept commands from the CPU to
display characters on a standard VGA monitor.

