LOTUS: Video Game System
An HCS12 Implementation
By Shane Avery and Peter Wang
Spring 2007 ECE 625

Abstract:

Videogame systems such as Nintendo or Sega had a huge influence on the generation that
grew up in the 80’s and 90’s. The early generation models are perfect examples of a
microcontroller application in that they are simple but did its job really well. The Lotus
Videogame System builds on the concept of providing an abstraction layer so that to
write games, a programmer no longer has to have an intimate knowledge of the hardware.
This paper will show the steps involved in creating that level of abstraction in both
software and hardware. In addition it will show the creation of two games using the
various features the abstraction level provides.

Introduction:

The greatest challenge for a programmer of a video game system is to gain the intimate
knowledge of the hardware. This knowledge can be a blessing as the programmer need to
know exact details of the machine to maximize the performance needed to provide the
player with a unique video game experience. This is known as “squeezing” the
performance out of a system. The downside of this however is the time is takes (the
ramp-up time) to become intimate with the system to achieve such results. Microsoft
attempted to break this trend with the XBOX by creating a video game system that
looked very much like a PC. This in affect helped game makers in that they didn’t need to
learn a new foreign architecture to squeeze performance out of the XBOX.

Back in the 8-bit NES era, having an intimate knowledge of the hardware was a good
idea because the architecture was simple and the ramp up time was relatively quick.
However, the gaming machines will continue to change (in fact Microsoft has left PC
architecture for the XBOX360) which forces the game designers to learn a new
architectures. The current generation of gaming hardware is so complicated that a new
programmer would take years to become familiar with it. By that point, new technology
advances will most likely make the current hardware obsolete. The solution to this
problem is to create 10 libraries which are tuned specifically to a particular game
architecture. This allows the game designer to focus on the creation of games and not on
learning the hardware. Game development can now leave the effort of creating 10
libraries which “squeeze” performance out of an architecture to the people who built the
hardware and design games that can be played across all platforms. Having the ability of
easily porting a single game to multiple systems is also beneficial since the game will
reach a wider audience bringing in additional income.

This paper will show how we designed the hardware for the Lotus video game system
based off the Motorola HCS12 architecture and how we wrote the software 10 libraries
which serve as an abstraction layer for game designers. In addition we will show how to
use these libraries to create games via two examples.

Lotus Layout and Block Diagram:

Below are diagrams of the Lotus layout and a simple block diagram of the system. The
Lotus layout is meant to show how the various hardware components are laid out on the
wood base as seen the picture above. Physically the MiniDragon connects to SoundGin
via the download cable that was included with the development kit in conjunction with a
cross over cable. It should be noted that these are RS232 level signals. All other
components of the Lotus system are interfaced to the MiniDragon board via the Custom
Interface Board.

The Block Diagram is meant to give a simple look at what peripherals make up the Lotus
system as well as what 10 modules in the HCS12 are used to communicate with those
peripherals.

Lotus Layout

ezVGA

Custom Interface
Board

SoundGin
5V, GND
T VGATX,VGARXx |
[MiniDragon

Block Diagram

Nintendo
Controllers

ezVGA

SoundGin

EEPROM

LEDs

Hardware:

1. 68HCS12

Above is a picture of the MiniDragon+ Development board from www.evbplus.com.
This is the board that is used for the Lotus project and it contains a MC9S12DP256. This
controller has 256KB of Flash, 12KB of SRAM, 4KB of EEPROM and is internally
clocked at 24MHz.

The power supply that came with the development kit didn’t provide enough current for
the entire Lotus system and thus an 800mA regulated power supply was bought instead.
The programming cable was used to program code into the device as first in SRAM and
later in Flash. In addition the cable was used for debug and in the end to communicate
with the SoundGin device.

Aside from the actual controller and the download cable the only other thing that Lotus
took advantage of in the MiniDragon was the male pin headers. There are four dual row
male pin headers that run around the controller that directly connect to every pin of the
controller. This was the way that the Custom Interface Board connected to the controller
itself. Female pin headers that were crimped to colored wires provided the actual
connections from the male pin headers of the Custom Interface Board to the male pin
headers of the MiniDragon+.

For reference the schematic for the MiniDragon+ is provided below:

EE 1p5g[Ge6e ‘6 -squaseg :3ieq
velil a
saguny suswnsag ez g
+NOAGHOINIK
a3t
531kM / WOD 'SN1dBA3 = S - - g
E ¥ Y Ag Q3IMO01104 ST LXZEL + 310N
s T idee mwﬁ
B1e) L 110
1_\ %1
#13s38/ W
YIH . = b T Fbd
XCHd IF S-dboevEow = 952d021685W EE)
M1 SPIENT €N 23
v Ta v geens? 2P 1dBLY JdoeLy
] vid S10
HESA
[Z] 7 xssa J1daaa 1
a7 g Tod
&1 2sshA
>3- 1554 A58/ IHIL/ A0 [=5 =7 -
4ant -
Tvd To| J9Sh 1831 gy L] €10
Lo1e L2101 zaan 9NU/8aYd 55 g T
c1d T 14aaA BENY/BAUd 7] 2: d
GING/BTAYd (-2 S
e AL TING/T100d e
12 1S] armnserd Z2ING/Z21aYd
e CINB/ET00d &
——55T oot 3NOWO¥/SDI/LHd »INY/b10Yd
T SING/STaDd &
it 1 B180YX/Sxd
FI80BX/bAd 13838
2RI 5T ez d 21 L1a06x/e5d N3DIMA S EFd
& QIHAB X/ ZAd
2 w2 L2 S1uQUX/ INd TuA
= e} sz sz < d v 1HOEX/@Hd Han 22 L]
£l 514 d Y vod
d ve £t XXQAL
2 —d zz 1z & o s LHd/LHMN =
d 2z 61 Ce o S SHd/IHMM BaaA
v nd Q1 L1 = Led Se] SHd/SHMY
< 91 51 e TS = PHJ/HM agLX
d vy €l S TTEBEET: o CHA/SHMN
& [N ZHd/ZHMA PR
o1 B = 2 THO/ THMY -
d d S =3 41D THRIT
XIOXL 3 2 ¢ 4 *#1Q0XH Sd o [CLIALLE a0 m.u
LIRS v £ S *eaxy seg S5 PNUOXL/ DS/ LTd A_
P (4 T o FRETS BB d) rNUIXYE/8Q5/9Md agLx3 35
= LR) Al ENUOIXL/2Wd neIx/e3d |5 Tog
YT < ENYOXH/IWd OY1/13d e
] ¥B1 9y 2 i ZNYOXL/SWd Mu/Z3d]
TR 2092 ENYDXY/ PHd DI19L/NENLST/E£3d z
ECR] EoiE e TNGOXL/EWd %123/v3d ==¢
S Gt o ITNUOXH/EHd 2341d1/H00W/53d Ser
o B PNGOXL/8X1/1Wd 13d1d1/Q00W/33d i
b BNUDXY/BXY/BWd DOYCN/S®IIX/L3d d
Seid © Scd
LI 4nt < 2axy/05d Bay/683 S
_ PaXL/TSd 108/ 194
anez-4nt g 1axy/2Sd zav/z8d E
ara—|{ z = xason s00ys : axivEss £osras :
60 - 1P4|0/0||w:oau L] < @1SOW/SSd caussad
= == o = o ®¥05/35d 9ay/984d <
st T unes —0 Bt 52 ess/usdq Lav/ied e
B S vo LI oS < & oNY/@aayd 0501014 F
2 & TNY/Taaud 100I/11d
- 1 - ZNW/Z0ayg 230I/21d &
- £NU/£QQYd £00I/E1d =
< EXCLEIGES % I < PNY/$QQed v20I/vLld d =
S 254a 9z 22 p— 8 i 5 SNuU/saade S20I/SLd 3
< Eer 9z SZ D e 7 9Nv/5ad5 e 9201/91Ld < o
2 ve g2 = 2 LNY/2QaYd 2D0I/ild Lo
d) d b d ¥a9%8) EE Q AT
g = S =
= 5 = 2z 651 > 5 A9 /06 d @Md/1OSIN/Bdd
h*U 5 RN T = = Q1 21 < N, g 509/ 1dd THd/1150W/Tdd :
1 T 91 1 Pp— T 210u/294d EMd/IADS/Bdd =
& ! E vt sl D =] 1109/59d £Md/1ES/Edd d & A S
d Zxqaa Ptd d *TQQA d =} aaa 23A
9 2 L Zr it 100W1/210Y/0d vMd/ZOSIN/Pdd 5y =
9 s = Biir o1 & [= & £10u/584d SMd/ZISOW/Sdd o5 o5
< v £ G 3 g LD = 2Q0WL/bTaY/96d 9M8/255/9dd |5y ok
< z T < = 9 s P < = STaB/Lud LMd/ZAIS/Ldd
E L5 d d v &P d vSa v G123 601
TH v d E 3 d en
Zo E]
TH

Z 38 VFeUS[GP6E _@g vsqusssg :sieq
a 12NN a
A3y sagquay juaswnsag 8t g
+FNOSEHAINIW
3
D3LAM 7/ WO3'SNIdEAZ

T300N L5871 3HL NI

“NOILYDINNWWOD 3ONDLISIO L80H MO0

G3Q3N ATNO 3¥Y AIHL

ine

3JATIS H30710S NO d31gd07 338 BbIr Ol

Tir

SWHD YT Sd HIIH SY 38 NED A3IHL
SWHO 221 38 GTINOHS 68 ONY SWHO @81 38 QINOHS Za 341 A77w34T ¥ 4 A8 g3aIMO01104 SI LX3L J10N
N89.16250
= N334 254 <-—— ®7QaXL Z6d
34 e <-- ®paxi 26d
= o4 @[y 26d ®I1aX1 HELEXUW
T z dyean 4 vz
] b
T ' e ﬁz T ¥erd 2Zd : 21] $NI1 Sihow BE
8TT v N TT T SLIWX --7
-
— Z21ngL NIy
£ LY IoEeT] L] mﬁ TlNDL INTH Gos (TR
2
M -2 B =
pIT Nt 4Nt
4nt @Nu 612 40T
. m 120 113 vz R 12
= aNg xTaxy ﬂ MY S T
T6d z El ~gA
an
u:m H’ z g 4N2T =z :
T ZXr
o = v X AT bNY
N 519GNT p
a LEUNEEE
o S8 g _m Tl xam3liva ¢ -
N@vsEXdS Zzao ar z
n At c
25A Tir
L3r 3| A S | & (4 T
N@SZ02890d T el 8935
= 4388 9xu g ¥ONUOXY ST d e 5535
= 2INYD E] HNUD aND £ 9 XH 19040 |
GHNGD L] oy G | 5 ¥JONGJq T 9935 3 %xQHd
cr G T XONUOX L v@tld v S { | 3s € RSHd
Ell o 39]| [303§) XpHd
z 99 ga3s o KCHd
LIS) c 39 0035 S5d__ *ZHd
By D3A CE] 1 9935 s XIHd
195a CEES] g *gHd
=)
EX L 9 g v & 2 1
= S
*GUdAIn %027 254
m N« XLWd Led MM MM P79d %X9KWd
E3 * *
23A M :MMM & SHd B0OTd d 5t eb_T0rd XpWd SR——
d ¥Sgd s g8 P
d xtod M XZTWd XN £31d W M
- = o *EWd XSy £otd -1
o XTud z TEr =
d X9 =
jelol N
= ZET W ety

2. Video

The video hardware is handled via a dedicated piece of hardware. The device is called
ezVGA Serial Module and it is made by Multilabs (http://multilabs.net). The ezZVGA
Serial Module contains the ezVVGA graphics controller, a PIC microcontroller that
provides the serial interface, SRAM memory that contains the frame buffer, and an
EEPROM that stores the ASCII bitmap. It requires 5 volts for power and consumes about
200mA. The majority of this is due to the Xilinx CPLD that makes up the ezZVGA
controller. Additional features include BAUD rates from 300 to 115.2K, 320 by 240
resolution, 64 colors, and a floating character command. The four pins header (which is
clearly labeled) contains connections for 5V, GND, Serial TX, and Serial RX.

The serial module is accessed via the SCI of the HCS12 at a BAUD rate of 115200. Any
command sent the module will be responded with either an ASCII ACK or a NACK. The
data sheet contains the commands for the module and they include commands for placing
text, defining and placing a floating character, and bitmap operations (such as draw line,
draw pixel, etc.). The serial module is physically interfaced to the HCS12 via the custom
interface board as can be seen in the picture of Lotus in the title page.

http://multilabs.net/

3. Sound

The sound is provided by the SSG01 Sound Coprocessor or SoundGin as referred to in
this document. SoundGin is a single chip that contains 6-voice electronic music
synthesizer, sound effects, and voice synthesizer. It is capable of producing complex
sound effects, synthesizer style music and English speech.

This chip is incredible! It is capable of Amplitude Modulation, Frequency Modulation,
Ring Modulation, ADSR Envelopes, and Sound Morphing just to name a few features. If
we were to acquire just the chip itself we would need to design a filter and amplifier as
well. As a result we purchased the development kit which includes the SoundGin chip,
filter, amplifier, and RS232 Level Shifter. The device requires at least 6V to work so we
connect SoundGin to directly to the MiniDragon regulated power supply. The SoundGin
development kit requires RS232 level serial data which is convenient since the SCIO
interface to the MiniDragon is RS232 level.

The only thing missing from the kit is a speaker which we have to provide ourselves.
SoundGin expects to drive an 8ohm speaker and we bought one from Digikey and
attached it to the SoundGin development kit speaker header to complete the sound
hardware peripheral.

4. Controllers

The controllers are the controllers from the Nintendo Entertainment System (NES).
Millions of these units were sold in the 80’s and continue to be used in other game
systems today (such as the Hydra game system). Internally the controller contains only a
CMOS 4021 shift register. The form factor connector of the old NES controllers could
not be found and thus we had to cut the connectors, strip the wires, and fit them into a
female header. Physically they connect to the HCS12 via the Custom Interface Board.
The five colored wires are as follows:

White — 5V
Brown — GND
Orange — Latch
Red - Clock
Yellow — Data

The active high latch must be asserted for 200ns. This will latch in the inputs and hold
their state. At this point the first piece of data is already available on the Data line. To get
the next piece of data we must clock the device on the Clock line. Thus to get all eight
inputs we need to clock the device a total of seven times. The order that the data comes
out corresponds to the following buttons on the controller:

Data0=A
Datal=B
Data 2 = Select
Data 3 = Start

Data 4 = Up
Data 5 = Down
Data 6 = Left

Data 7 = Right

5. EEPROM

The EEPROM device is a 25L.C160A from Microchip. It is a 16Kbit SPI device with a
voltage range from 2.5V-5V and is in a 8 pin DIP package. It is organized as 2K x 8bit
and has 16 byte pages. There is an active low write protect line that is pulled high. Also,
there is an active low hold pin that is also pulled high. The remaining pins are the SPI
interface pins which are routed to the HCS12 pins via the Custom Interface Board.

The first byte sent to the device is one of the following instructions:
1. Read — Read data.

2. Write — Write data.

3. WRDI - Disable write operations.

4. WREN - Enable write operations.

5. RDSR - Read the status register.

6. WRSR — Write status register.

To read data first send the RDSR command to read the status register to be sure that the
device is ready to accept a read command. Once the device is ready, send the Read
command along with the 16 bit address. The device will then send the byte at that
address. To write data first send the RDSR command to read the status register and be
sure that device is ready to accept a write command. Once the device is ready, send the
WREN command to allow a write to the device. This needs to be done every time you
write a byte to the device. After that, send the Write command, 16 bit address, and then
the data to write to the device.

6. LEDs

The LEDs are 0805 package surface mount devices that are soldered to the Custom
Interface Board. There is one Blue LED that is a power led that is tied to the power rail
that turns on whenever the power is applied to Lotus. There are two Blue LEDs, two Red
LEDs, and four Green LEDs. The Custom Interface Board contains eight LEDs that are
indirectly tied to the eight PWM outputs of the HCS12. This will give the LEDs the
ability to have a “fade” effect (LEDs can be more than just ON or OFF).

The LEDs are not however directly driven by the PWM pins of the HCS12. The PWM
pins are connected to two 7407 open collector output buffers ICs which drive the LEDs.
The LEDs are current limited by a 220 ohm DIP resistor pack.

The two 7407 open collector ICs are powered by 5V and sink the current that run through
the LEDs when they are on. As a result, a logic low on the 7407 input will light the LED.
Thus, the PWM unit on the HCS12 should be configured to have an inverted polarity.

7. Custom Interface Board

Above is a picture of the Custom Interface Board. The schematic capture and board
layout was done in Eagle. The boards were cut using a Protomat machine that plots the
layout to X,Y coordinates and literally drills out the non-copper portions of the PCB. It is
a two sided PCB in which the bottom (not shown) contains the bypass capacitors and the
DIP resistor pack.

The Custom Interface Board provides an interface from the HCS12 to the ezVGA,
EEPROM, LEDs (PWM), and controllers via male pin headers. Connections from the
male pin headers of the Custom Interface Board to the MiniDragon board male pin
headers (which connect directly to the pins of the HCS12) are listed below:

+5V - Pin 107 VGA Tx - Pin 91

GND - Pin 106 VGA Rx - Pin 92

PWMO - Pin 4 PWM1 - Pin 3 PWM2 - Pin 2 PWM3 - Pin 1
PWM4 - Pin 112 PWMS5 - Pin 111 PWM6 - Pin 110 PWM?7 - Pin 109
SI-Pin 94 SCK - Pin 95 SO - Pin 93 /CS —Pin 28

CLK -Pin 24 LATCH -Pin 25 PIDATA-Pin26 P2DATA -Pin 27

Below are pictures of the Custom Interface Board schematic and board layout.

7 T B T] I E T

i SPI EEPROM i
VGA Interface 1 = rj, =
3] I - iy 3]
= I =
A
NES Controllers
B
2 E:, . Power 2

Lotus

4/82/2887 68@4:23:

Sheet: 1/1 |
1

8. Parts List

MiniDragon+ - www.evbplus.com - $99.00
ezVGA - http://multilabs.net/ezZVGA_SM.html - $64.95
SoundGin - http://thebotshop.com - $49.99
EEPROM - digikey.com - $1.90

Speaker — digikey.com - $7.90

Blue LEDs - digikey.com - $4.98

Green LEDs - digikey.com - $7.50

Red LEDs - digikey.com - $3.00

220 ohm Resistor Pack - digikey.com - $1.20
7404 OC Buffer - digikey.com - $3.84
Female housings - digikey.com - $12.33
Female crimp headers - digikey.com - $9.86
Misc (i.e. wire, shrink wrap, etc.) - $5.00

http://www.evbplus.com/
http://multilabs.net/ezVGA_SM.html
http://thebotshop.com/

10 Library:

The 10 library is the key to the Lotus system. It provides functions that add a layer of
abstraction so that the game designer need not know how to directly communicate with
the hardware peripherals of the system. All code was written in C using the GCC
compiler. The IDE used was EmbeddedGNU which can be found at
www.ericengler.com/EmbeddedGNU.aspx.

1. Initialization

Before the programmer writes any code of his own he should first call the Init() function.
This function will initialize all HCS12 peripherals for use with the 10 library. Here is a
list of the things this function will initialize:

- Initialize the Enhanced Capture Timer for use in seeding the Random Number
Generator.

- Initialize PORTB outputs for use in the Controllers.

- Initialize the SPI for use in the EEPROM.

- Initialize the PWM for use in the fade effect of the LEDs.

- Initialize the RTI to give the game designer a sense of time.

- Initialize SCIO for use with the SoundGin sound chip.

- Initialize SCI1 for use with the ezZVGA Serial Module.

- Wait for 300ms for the ezZVGA Serial Module to properly come up.

- Send a ‘U’ to the ezZVGA Serial Module so that it configures its own serial BAUD rate
via Auto BAUD.

- Wait for the ezVGA Serial Module to ACK or NACK its Auto BAUD.

Click on the hyperlink to go to the code for the Init() function: Init()

2. Video

The ezZVGA Serial Module has an auto baud feature that’ll detect the serial baud rate
when starting up. In order to access this, the software must send out a synchronizing
command (‘U’, 0x55) for the ezVGA to lock on to. If successful, the ezZVGA will return
an ACK signaling that it is ready and everything is fine. In our software this procedure is
done in the initialization function (see above).

The ezVGA color scheme is based on mixing the 3 primary colors (red, blue, and green)
each at one of 3 intensities. The color is represented as a byte with the lowest 2 bits is
red, the next 2 bits is green, and next 2 bits is blue. The 2 most significant bits are not
used.

The ezVGA Serial Module has a total of 9 commands and the communication follows a
strict structure that always leads off with the actual command byte. All commands will
return a value to indicate if everything is working properly. The following is an outline
of the more commonly used commands.

-Area Clear Command:
This command clears an area on the screen into any of the 64 colors. The user only has
to input the starting and ending X/Y position and the color of the area.

-Background Color Command:
This command set the background color to any of the 64 colors. Any object already on
the screen will not be changed.

-Clear Screen Command:
This command clears the entire screen of all objects in to any of the 64 colors.

-Line Command:
This command draws a line between the starting and ending X/Y positions in the color
that the user specified.

-Place Character Command:
This command places a defined character on the screen in the user defined color, size,
and X/Y position. User is also able to write the character in the regular or inverse style.

-Read and Write Pixel Command:

The Write command changes the specific pixel into the color that the user has defined.
The Read command will return the pixel color value of the user defined position instead
of an ACK or NAK. The Read command is the only command that does not return an
ACK or NAK.

Click on the hyperlink to go to the code for the ezVGA library: ezZVGA

3. Sound

The SoundGin chip also requires a very strict structure for commands. The very first
byte sent for all commands is the escape character (27 or 0x1B) followed by the
command byte and then the parameters for the commands. SoundGin does not return for
any command except for the read one byte. The following are some of the commonly
used functions.

- WriteOneByteWMask:

We used this command to change the envelope of the sound in our programs by writing
to the address of the Oscillator A1’s Envelope Decal (Addr 30). The envelope attempts
to simulate the way a note is played on a piano or a guitar string. All addresses are
defined in SoundGin.h.

- LoadPlayNote:
This command loads a predefined note into a specified oscillator and plays it. All notes
are defined in SoundGin.h.

- ReleaseOscillator:
This clear the oscillator so that any sound that’s currently play will stop. All oscillators
are defined in SoundGin.h.

Click on the hyperlink to go to the code for the SoundGin library: SoundGin

4. Controllers

The only software written for the controller is to shift in the current controller command
and make it available. This is done by latching the general purpose 10 for 400ns so that
the current controller state can be saved. We then released the latch for another 400ns
before starting to read it out. The first bit can be read out after the latch is released and
the rest of the controller state can be read out during the next 7 clock cycles. Both
controllers are read in at the same time to save time. When the function GetContData() is
called, the controller inputs are stored in the global value ContP1 and ContP2.

The controllers are setup in the Init() function by setting the general purpose 10
PORTB?’s data flow to have bits 0, 1, and 4 as the output. The output also has the clock
and latch as low, and the chip select signal to be high.

Click on the hyperlink to go to the code for the Controller functions: Controller

5. EEPROM

The EEPROM is communicated through the SPI, which does away with sending out a
null bit to get the device’s attention. The only necessary step needed to access the
EEPROM is to set or clear the Chip Select (CS) line. The EEPROM is setup during the
Init() function to set the clock rate to 1.5 MHz and changed the HCS12 board as the
master. The 1O library allows the software to write a byte of data into a specific address
and read from any address as well. All addresses are 16-bit values and all data stored are
unsigned char.

-Write:

The write function first clears the CS line for the Write Enable command before setting
the CS line. When the status returns as ready, the write command will require the CS line
to be cleared again for the actual write command followed by the 16 bit address and then
the data before setting the CS line. The function will then block and check in on the
EEPROM until it returns with a status showing that it’s done. The following is an
example of how to write the value 14 into the address 300.

WriteEEPROM(300, 14);

-Read:

The read function first clears the CS line for the write command and then the 16 bit
address. The software will then blocks until the data is returned before setting the CS.
The read value is returned from the function. The following is an example of how to read
the value stored in address 300.

unsigned char value = ReadEEPROM(300);

Click on the hyperlink to go to the code for the EEPROM functions: Read and Write

6. LEDs

The PWM duty cycle library to affect the LED’s fade effect required the PWM polarity
to be set on active low making the LED glow brighter with a high duty cycle. The PWM
clock is also divided by 32 because the LED controls do not need a very fast clock. In
the fade effect function, an input is required to enter a value from 0 to 7 for the LED
address. On the Lotus board, the left most LED above the controller input is the LED
number 0 and counts up. The power indication LED is not addressed. The second input
required is the intensity of the LED with 0 as off and 255 as the brightest. The following
is an example of how to set the third LED from the left to a quarter of max intensity.

SetPWMDuty (2, 64);

Click on the hyperlink to go to the code for the LEDs PWM function: LED

7. Random Number Generator

The 10 library uses the enhanced capture timer to seed the Random Number Generator.
The timer is started in the Init() function and from then on runs continuously. As some
point the game designer needs to call the Seed() function which will use the value that is
in the ECT as that time as a seed for the Random Number Generator. The game designer
should take great care not to make the Seed() function call at a deterministic time as the
number will then be the same every time. It is advised to use player input to determine
when the Random Number Generator is seeded.

Once the Seed() function has been called any call to the Rand() function will result in a
new random number. The Rand() function is simply a 16bit LFSR with taps at 16, 15, 13,
and 4. The Rand() function will return the new random number as an unsigned int and in
addition a global variable called RandNum will be assigned the new random number.

8. RTI

The Real Time Interrupt is set in the Init() function to fire off an interrupt at
approximately 30Hz and flag a global value. During the main function of the code, this
flag is constantly polled for the 30Hz tick. Each program written for the Lotus must have
all operations finished before the next 30Hz tick to avoid timing issues. If the Interrupt
happens before all of the code are finished executing, the missed interrupt will lead to
errors in the program executing because parts of the code will be operating on a different
time frame. Controlled blocking is permitted if all operations needs longer than 30Hz to
complete by waiting for the next interrupt to occur and clear the flag. Below is a typical
setup for the main loop that will wait until the RTI fires before running its code.

// Main loop.
while(1)
{
// Wait for the RTI flag to be set.
if(RTIFlag)
RTIFlag = O; // First thing we do is clear the flag.

}
}

Below is an example of how to make the controlled blocking call within the main
program executing.

if(RTIFlag)
RTIFlag = 0O; // First thing we do is clear the flag.
while(RTIFlag == 0); // Wait for RTIFlag to be set.
RTIFlag = O; // Clear it.

}

Click on the hyperlink to go to the code for the Real Time Interrupt function: RTI

Example Games:
1. Tron Bike Knockoff

The Tron Bike game pits two players (red and blue) against each other in a closed off
arena. Each player is in constant motion and a wall erects in their trail. The objective of
the game is to knock off the other player by forcing them to run into the arena wall or the
trail walls. The arena is also dotted with mines that the players can use to their
advantage. Each player has 4 lives that’s displayed on the custom interface board and the
game ends when one player loses all of their lives. This game also features a splash
screen before the game begins and an intro music that’s played on loop. During the
game, the player can move in all directions and each round will continue until one of the
players gets knocked off. A draw condition happens when both players gets knocked off
at the same time.

The game is implemented as a 3 state machine: Waiting for Start, Start Game, and
Running. All three states are executed well before the 30Hz time limit is up. A
controlled block is used during the Waiting for Start state to hold the current screen for 2
second.

Waiting for Start:

In this state, the game checks the controller to see if any of the players had pushed the
start button. For a new game, the current screen is held for 2 seconds before the splash
screen is drawn and the intro music is played. The intro music’s notes and corresponding
play duration has already been predefined and two local index keeps track of which note
to play and how much longer to play that note. For a game in progress, nothing new is
displayed.

Start Game:

Once either player has hit the start button, this state will clear the screen and draw out the
arena and stop the intro music. The random number generator is also used to set a
number of mines. The remaining lives are read from the EEPROM and displayed on the
LED bank. This state immediately jumps into the Running state.

Running:

During the Running state, the controller is checked to see if the players had changed to a
new direction and move the dots on the screen appropriately. The new location is then
checked to see if it has already been occupied by a mine, trail wall, or the arena wall. If
the new location is already occupied, then the player has lost the round. Both players are
checked for either a win condition or a draw condition. A different noise is played for the
draw condition, a win condition, and the game in progress condition. When the round is
over, the current victor screen is drawn and the state returns to Waiting for Start.

s,)

Initialization

State

i> Waiting for Start

Waiting for Start
State

Reset the Game
by writing the max
lives to the

EEPROM

a Ul

display for 2
seconds so the

last game’s result

Clear and display
the splash screen

Start Intro music
play back from

beginning

Reset the play
duration before

loading next note
and play

Check if Players
has start a game/
round

hit on either
ontrolle

Change the state
to Start Game
State

f Playing the
Intro music

Stay in Waiting for
Start State

Start Game State

Stop the music
play back

i> by clearing it and

Initialize the arena

place the players

Use the random
function to insert
10 mines

Display the lives

A " Change the state
remaining using i> to Running

the LED’s

Running State

j‘> Draw the current
player’s positions

Parse the

of the player's new
direction

Check status of

i> controller for each i> the players with

their new direction

Game status is

still in Running ¢

State

Play a tone

Status is Blue lost

the round

Status is Red lost

the round

Status is Game
Draw

Show the game/ |7
round status

L

Change the state
to Waiting for Start

2. Kill Kevin

Kill Kevin is a reaction based game in which two players race to complete 50 sequenced
movements. The random number generator will determine whether the players should
press up, down, left, right, A, or B. Players will have to complete the same 50 movements
and any mistake will result in the player being penalized by going back 10 movements.

When the player first turns on the game they are greeted with a splash screen. When the
user hits a button is when the Random Number Generator is seeded by the ECT and the
50 movements are determined. The players are then given countdown to the start of the
game and when the count gets down to zero the game begins. When a player makes a
mistake not only do they get knocked down by 10 but the players hear an annoying noise
to indicate the error. The closer a player gets to 50 the more “intense” the game music
and the more the LEDs light up. When one player reaches 50 then game ends and plays
the winning music.

At any time the players can press start or select to get to the Save/Restore menu. Here
players can save the current game to EEPROM or restore a previous game from
EEPROM.

The game is made up of five state machines. A brief description of the state machines is
below followed by a flow diagram of each state machine.

SplashSM: This SM displays the Splash Screen and starts the Intro Music State Machine.
It simply waits for the user to press any button to begin the game. When the user does, it
generates the 50 Random Numbers and starts the Player State Machines.

Player SM: There are two player state machines. Essentially they are identical and run
independently of each other. The SM first updates and displays the score and the LEDs. It
then determines based on the random number array what to display next for the player
and then waits for player input. Once the player hits a button the SM determines whether
it was correct or not. If wrong, it tells the Music SM to play the annoying noise. We then
determine if we have reached 50 and if so we play the winning music.

Music SM: The Music SM begins my playing the intro music which is from 2001 Space
Odyssey. When game play begins the Music SM just plays the same two notes over and
over again but plays them faster and faster depending on how close the players are to 50.
When a player makes a mistake the Music SM will play an annoying sound to indicate
the error. After a player has reached 50 the Music SM will play the winning music which
is “We Are the Champions.”

Select SM: The Select SM is started when one of the players hits the start or select
button. This will display a menu for the players to save or restore a game.

Splash State Machine

Clear Screen

Draw Strings
Start Intro Music SM

loaded a —Yesp|

Game?

Number Indexes

Clear Random

for both players

as any Playe
Hit a Key

Yes

Was it the

—Yesp|
Select Butto

Halt Music SM
Halt This SM
Start Select SM

No

A 4
Halt Intro Music
SM

oaded &
Previous
Game

—No»|

Get 50 Random
Numbers

Yes

v
Clear Screen
Draw Kill Kevin
Draw Score
Draw Crosses
Draw Ready
Draw 3

Has
RTICounter
Reached

Has
RTICounter
Reached 60

Determine Starting Color
Start P1 SM
Start P2 SM
Start Game Music
Halt this SM

~

eryEndRTI
reached 60

-

Playerl and Player2 State Machine

-

Select State Machine

Update PWM
Display Score
Clear Boxes

Yes
s'the Playe
still pushing
e button

No

v

Determine color
and location of
box(es) based on
the Random array
and then Draw the
box(es)

Has Player Hi
a Button

Yes

or Select
Button

No

Was it Correct >—

Yes

———Yes— |

—NoO—p|

Halt P1 SM
Halt P2 SM
Halt Music SM
Start Select SM

Back Up 10
Set the Annoying
Flag

Display Strings

A

Display Cursor
based on value of ¢
Selvar

Has Playe
Pushed Up,
Dewn, Star]

Yes
as it Up or _ Yes | Update SelVar
Down Accodingly

Display Win
Set WinFlag
Halt P1 SM
Halt P2 SM
Start Splash SM at

Very End

Restore

[Resume \

| |

v v

Write the Indexes . Read the Indexes
For P1 and P2 St';?tltsﬂl]zlass:’\SAM For P1 and P2
Rand Array P Rand Array
Write the Rand Read the Rand
Array Array
\1\ . ’,///
N Display

Done for 1 Second

Music State Machine

Yes

Should we
Play Game
Music

No (Play Intro Music)

Play the Next Intro
Note

Are we Do
Playing This
Note

Yes

another

No

v

Wait to Play Game
Music

Determine which
note to Play

Yesﬂ Determine how

long to Play based
on P1 and P2

Random Indexes

No— |

playing this
note

S the WinFlag

Yes

—Yes—w

Change to Square
Wave

Play Annoying
Note for ¥4 sec

Play the Next
Winning Note

Playing This
Note

Yes

Should we play
another

No

Wait

Future Work:
1. Video

Add functions to create custom characters and floating characters. Floating characters are
a special low flicker character that is only moved during the sync. This could be a mouse

pointer for example. Functions are needed not only to define the floating character but for
moving it as well.

More complex draw methods are possible using existing library such as draw figure, or
draw box.

2. Sound

The SoundGin is capable of doing synthetic voice and this would be a great addition.
Another possible future work is to simplify the SoundGin library further so that it’s more
intuitive to use without an intimate knowledge of the SoundGin hardware. We would
also like to see the way SoundGin’s command implementation changed to the ezZVGA'’s
implementation to take up less memory space.

3. 68HCS12

Currently the largest game can only be the size of 1 flash page. It would advantageous to
learn how to program the entire flash for larger, more complex games. This would also
allow multiple games to be stored onto the memory.

4. Additional Games

Survivor - A game where two players are faced off against an invading army of foes.
Each armed with a ranged and a melee weapon, they must survive to become stronger
and faster. An experience system will allow the players to become more powerful as they
fight more and the EEPROM could be used to store all players’ stats.

Conclusion:

Keeping up with the complexity of the current hardware available is quickly becoming a
near impossible task without dramatically increasing the cost of software development.
By providing an abstraction layer between the game programmers and the hardware, this
can greatly reduced the development cost by cutting the effort that new hardware training
requires. The Lotus video game system took this abstraction layer approach to shield the
game developers from having to learn how to interface with the hardware such as the
HCS12 or the ezZVGA.

This paper shows how game designers can go from a software flow diagram and realize
their game on a video game system without having to interface directly to the hardware
peripherals. For example, all mention of the EEPROM interface in the flow diagrams
involves read from or write to, there is very little mention of SPI timing to communicate
with the EEPROM. The same trend of having a transparent layer to the hardware is
shown in the game specific code. Bulk of the code is logic for the games themselves with
very little being for the hardware peripherals of the video games system.

The two games mentioned in this paper were written in approximately one week. If the
game programmers had to write these games without the use of the 10 library it could
have easily taken ten times that long. The elimination of the overhead from having to
interface with the hardware resulted in the production of fun games in a very short period
of time because the effort is focused only on the game.

A hidden benefit is that a standard has already been established and making the code
easier to read and debug. The trade off is that without direct control of the hardware, the
general purposed functions can cause a slight performance impact. However, the over all
benefits of being standardized really out weights the slight hit in performance.

In conclusion we have shown the reason that video game produces would want to create
10 libraries and how they benefit game programmers. We have also shown by example

how video game designer would design their system to support this paradigm by writing
the 10 library code. As a result the future of game design will likely follow this trend to

stay competitive.

References:

[1] Steven Barrett and Daniel Pack, Embedded Systems Design and Application with
the 68HC12 and 68HCS12, Pearson Prentice Hall, 2005

[2] Steven Barrett, Real Time Embedded Systems Spring 2005, University of
Wyoming, Department of Electrical and Computer Engineering, 2005

[3] Andre LaMothe, Game Programming for the Propeller Powered Hydra, Parallax
Inc, 2006

[4] Ashley Geng, ECE 625 Microprocessor Application Notes, CSUN, Department of
Electrical and Computer Engineering, 2007

Appendix:
1. Library Code

Initialization Code:

/7 1 izing all of the registers on the dragon board for the lotus system
voi tO
{

char index;

// Initialize the counter used for seeding the Random Number generator.

TSCR1 = 0x80;

// Initialze the Controller and SPl CS signal.
DDRB = 0x13; // Make bits 0,1, and 4 output.
PORTB = 0x10; // Make clk low and latch low.

// Make SP1 CS signal high.

// Initialize the SP1 for the EEPROM.
SPIOBR = 0x03; // Set the SPI clk rate to 1.5MHz.
SPIOCR1 = 0x50; // Turn on SPI and make us a Master.

// Initialize the PWM.
PWMPOL = O; // Active low polarity. This means the greater the duty
// cycle then brighter the LED.

PWMPRCLK = 0x55; // This makes clock to the PWM divided by 32 which is
// good because the LED can"t switch that fast.

PWME = OxFF; // Enable all PWM channels.

// Turn the LEDs off.
for(index=0; index<8; index++)
SetPWMDuty(index, 0x00);

// Initialize the RTI.
CRGINT |= RTIE; // Enable the interrupt for the RTI.
RTICTL = Ox78; // Set the RTI frequency to 30.5Hz.

// Initialize SClIs for SoundGin and VGA.
// Initialize SCIO

SCIOBDH = 0; // br=MCLK/(16*baudRate)
SCIOBDL = 0x9C; // 9600 BAUD.
SCIOCR1 = 0;

/* bit value meaning

LOOPS, no looping, normal

WOMS, normal high/low outputs

RSRC, not appliable with LOOPS=0

M, 1 start, 8 data, 1 stop

WAKE, wake by idle (not applicable)
ILT, short idle time (not applicable)
PE, no parity

PT, parity type (not applicable with PE=0) */
SCIOCR2 = 0x0C;

/* bit value meaning

TIE, no transmit interrupts on TDRE
TCIE, no transmit interrupts on TC
RIE, no receive interrupts on RDRF
ILIE, no interrupts on idle

TE, enable transmitter

RE, enable receiver

RWU, no receiver wakeup

SBK, no send break */

OoOrRrNWrOON
[ejelolojooNaoNa)

OoOrRrNWhOOON
OOoOrPLrPROOOO

// Initialize SCI1

SCI1BDH = 0; // br=MCLK/(16*baudRate)
//SCI1BDL = 13; // 115200 BAUD.
SCI1BDL = 14; // 115200 BAUD.

SCI1CR1 = 0;

/* bit value meaning

LOOPS, no looping, normal

WOMS, normal high/low outputs

RSRC, not appliable with LOOPS=0

M, 1 start, 8 data, 1 stop

WAKE, wake by idle (not applicable)
ILT, short idle time (not applicable)
PE, no parity

PT, parity type (not applicable with PE=0) */
SCI1CR2 = 0x0C;

/* bit value meaning

TIE, no transmit interrupts on TDRE
TCIE, no transmit interrupts on TC
RIE, no receive interrupts on RDRF
ILIE, no interrupts on idle

TE, enable transmitter

RE, enable receiver

RWU, no receiver wakeup

SBK, no send break */

OrRrNwWrOON
[ejelolojooNaoNa)

OoOrRrNWhUOTON
OOoOrPLrROOOO

// Wait for about 300ms for ezVGA to initialize.

for(index=0; index<10; index++)

while(RTIFlag == 0); // Wait for RTIFlag to be set.
RTIFlag = O; // Clear it.
3

// Send the U character to ezVGA so that it know the BAUD rate.
while((SCI1SR1 & TDRE) == 0);
SCI1DRL = "U";

// Wait for ACK/NACK. This guarantees that we wont send

// ezVGA another byte until he is ready.

while((SCI1SR1 & RDRF) == 0);

if(SCI1DRL == 0x15) // Check to see if it is a NACK.

{
SetPWMDuty(1, Oxff); // Turn on both red LEDs to indicate a problem.
SetPWMDuty (5, Oxff);

// Wait for about 1s for user to see there is a problem.
for(index=0; index<30; index++)
{
while(RTIFlag == 0); // Wait for RTIFlag to be set.
RTIFlag = O; // Clear it.
3

SetPWMDuty (1, 0x00); // Turn off both red LEDs.
SetPWMDuty(5, 0x00);
}

/* Any user initializations here. */

RTI ISR:

// Interrupt Handler routine for RTI.
void __attribute__((interrupt)) RTIHandle()

CRGFLG |
RTIFlag

RTIF; // Clear the interrupt flag.
1; // Set the global variable flag.

/* Any user code needed withing the ISR here. */

PWM Duty Cycle (LED Fade Effect):

// The pulse width modulator function controls 8 LEDs on the Lotus Board.
// The available 8 LEDs are referrenced from 0-7 with O being the left most
// LED and 7 being the right most. The intensity of the LED can be set in
// a range between 0 and 255 with 255 being the brightest.

void SetPWMDuty(char PWMChannel, unsigned char Value)

switch(PWMChannel)
case 0: PWMDTYO = Value;
break;
case 1: PWMDTY1 = Value;
break;
case 2: PWMDTY2 = Value;
break;
case 3: PWMDTY3 = Value;
break;
case 4: PWMDTY4 = Value;
break;
case 5: PWMDTY5 = Value;
break;
case 6: PWMDTY6 = Value;
break;
case 7: PWMDTY7 = Value;
break;
3

Get Controller Data:

unsigned char ContP1;
unsigned char ContP2;

// This Controller function reads out the shift registers and store in two
// public values called ContP1 and ContP2. ContPl is the left controller
// and ContP2 is the right one.

void GetContData()

{

char index;

ContP1
ContP2

0;
0;

// Be sure that we start out with clk and latch set to zero.
PORTB &= Oxfc;

// shift in data from controllers.
// First we latch it.

PORTB |= 2;

// Wait 400ns

__asm__ __volatile__ (" nop ");__asm nop ");
_asm__ (" nop ");__asm__ _ nop "*);
__asm__ _ volati (" nop ");__asm__ _ *nop ");
__asm__ _ volatile__ (" nop ");__asm nop ");
_asm__ _ volatile__ (" nop ") asm nop "*);
// Release the latch

PORTB &= Oxfd;

// Wait 400ns

_asm__ _ volatile__ (" nop _volatile__ (" nop ");
_asm__ _ volatile__ (" nop ___ __volatile__ (" nop ");
_asm__ __volatile__ (" nop (" nop ");
_asm__ _ vola (" nop (" nop ");
_asm__ _ volatile__ (" nop " nop ");

// Get the data.
iT(PORTB & 0x04)
ContP1l |= 0x01;

if(PORTB & 0x08)
ContP2 |= 0x01;

for(index = 0;index < 7;index++)
{
// Bring the clock high.
PORTB |= 0x01;

ContP1
ContP2

= ContPl << 1;

= ContP2 << 1;
// Bring the clock low.
PORTB &= Oxfe;

if(PORTB & 0x04)
ContP1 |= Ox01;

if(PORTB & 0x08)
ContP2 |= O0x01;

Random Number Generation:

unsigned int RandNum;

// This is a library function that will seed the random number generator
// with the timer/counter value.
void Seed()

RandNum = TCNT;
3

// This is a library function which will return a pseudo random number.

// Note that the user should first call the Seed() function one time before
// calling Rand(). After that the user can call Rand() over and over again to
// get a random number. Note that the user can also access the random number
// at any time as it is a global variable.

unsigned int Rand()

unsigned int temp;

temp = (RandNum << 1) ~ (((RandNum & 0x8000) >> 15) | /* 16 tap */
((RandNum & 0x8000))] /* 15 tap */
((RandNum & 0x8000) >> 2) | /* 13 tap */
((RandNum & 0x8000) >> 11)); /* 4 tap */

RandNum = temp;
return temp;

EEPROM Write:

// Note that when writing EEPROM we will block until the operation is complete.

// Thus, it is not advisable to do EEPROM write during gameplay as it will
// violate the RTI.
void WriteEEPROM(unsigned int add, unsigned char data)
{
unsigned char MSB = add >> 8;
unsigned char LSB = add;
unsigned char dummy;

// First we need to enable the write.

PORTB &= Oxef; // Clear Cs.

SPIODR = 0x06; // Send Command to enable writes.

while((SPIOSR & SPIF) == 0); // Wait for us to write data.

PORTB |= 0x10; // Set CS.

dummy = SPIODR; // Need to access SPIODR to clear the interrupt.

// Now write the data.

PORTB &= Oxef; // Clear CsS.

SPIODR = 0x02; // Send Command to write.

while((SPIOSR & SPIF) == 0); // Wait for us to write data.
dummy = SPIODR; // Need to access SPIODR to clear the interrupt.

SPIODR = MSB; // Write the MSB of the address.
while((SPIOSR & SPIF) == 0); // Wait for us to write data.
dummy = SPIODR; // Need to access SPIODR to clear the interrupt.

SPIODR = LSB; // Write the LSB of the address.
while((SPIOSR & SPIF) == 0); // Wait for us to write data.
dummy = SPIODR; // Need to access SPIODR to clear the interrupt.

SPIODR = data; // Write the data.

while((SPIOSR & SPIF) == 0); // Wait for us to write data.
dummy = SPIODR; // Need to access SPIODR to clear the interrupt.
PORTB |= 0x10; // Set CS.

// Now wait for the data to be written.
dummy = Oxff;
while(dummy & 0x01)

PORTB &= Oxef; // Clear CS.
SPIODR = 0x05; // Send the command to read the status register.

while((SPIOSR & SPIF)
dummy = SPIODR; //

SPIODR = Oxff; //
while((SPIOSR & SPIF)
dummy = SPIODR; //

== 0); // Wait for us to write command.
Dummy read to clear the interrupt.

Dummy write value to clock data in.
== 0); // Wait for dummy write to complete.
Dummy value we care about.

PORTB |= 0x10; // Set CS

EEPROM Read:

// Note that when reading EEPROM we will block until the operation is complete.

// Thus, it is not advisable to do EEPROM read during gameplay as it will
// violate the RTI.
unsigned char ReadEEPROM(unsigned int add)
{
unsigned char dummy;
unsigned char MSB = add >> 8;
unsigned char LSB = add;
unsigned char retval;

// Now write the data.

PORTB &= Oxef; // Clear CS.

SPIODR = 0x03; // Send Command to read.

while((SPIOSR & SPIF) == 0); // Wait for us to write data.
dummy = SPIODR; // Need to access SPIODR to clear the interrupt.

SPIODR = MSB; // Write the MSB of the address.
while((SPIOSR & SPIF) == 0); // Wait for us to write data.
dummy = SPIODR; // Need to access SPIODR to clear the interrupt.

SPIODR = LSB; // Write the LSB of the address.
while((SPIOSR & SPIF) == 0); // Wait for us to write data.
dummy = SPIODR; // Need to access SPIODR to clear the interrupt.

SPIODR = Oxff; // Dummy write to get the data.
while((SPIOSR & SPIF) == 0); // Wait for us to write data.
retval = SPIODR; // Need to access read the data we wrote.
PORTB |= 0x10; // Set CS.

return retval;

ezVVGA Serial Module Functions:

unsigned int ezVGABufferSize = 0;
char ezVGABuffer[10];

// lssue command
char ezVGAlssueCMD()

int index = 0;
volatile int temp;

// Write until all command has been written
for(index=0; index<ezVGABufferSize;index++)

while((SCI1SR1 & TDRE) == 0) {};
SCI1DRL = ezVGABuffer[index];
3

// Wait for ACK/NACK. This guarantees that we wont send
// ezVGA another byte until he is ready.
while((SCI1SR1 & RDRF) == 0); // Wait for data.

temp = SCI1DRL; // Need to read register for flag to clear.
return O;

3

// This command can be used in a few different ways. It can be used to clear a

// specific area on the screen or it can be used to draw filled squares and

// rectangles. Each area is defined by two points. The upper left-hand corner
// is referred to as point x1,yl and the lower right-hand point as x2,y2. When

// this command is executed the ezVGA Serial Module will draw an area from

// point x1,yl to x2,y2. |If the color is the same as the background color then

// it will appear that the area was erased. If any other color is used a
// square/rectangle will appear on the screen.
char ClearArea(char color, int x1, char yl, int x2, char y2)
{
// Assemble the x values into high and low bits
char x1HighByte = x1 >> 8;
char xlLowByte = (char)x1l;

char x2HighByte = x2 >> 8;
char x2LowByte = (char)x2;

ezVGABuffer[0] = V_AREACLEAR;
ezVGABuffer[1] = color;
ezVGABuffer[2] = x1HighByte;
ezVGABuffer[3] = xlLowByte;
ezVGABuffer[4] = y1;
ezVGABuffer[5] = x2HighByte;
ezVGABuffer[6] = x2LowByte;
ezVGABuffer[7] = y2;

ezVGABufferSize = 8;

// lssue command
return(ezVGAlssueCMD());
}

// This command is used to change the background color of the screen. Any
// objects on the screen and the floating character are not affected by this
// command, they are drawn around.

char SetBackground(char color)

{
ezVGABuffer[0] = V_SETBCKGND;
ezVGABuffer[1] = color;
ezVGABufferSize = 2;
// lssue command
return(ezVGAlssueCMD());

3

// This command is used to clear the entire screen. The screen is cleared to

// the color specified and this becomes the new background color. The floating

// character is automatically turned off when this command is executed. If it
// is needed it must be turned back on after the command is completed.
char ClearScreen(char color)

ezVGABuffer[0]
ezVGABuffer[1]

V_SCRNCLEAR;
color;

ezVGABufferSize = 2;

// lssue command
return(ezVGAlssueCMD());

// Create a Character. This command allows you to define your own custom

// characters or change any of the ASCII characters that came with the ezVGA
// Serial Module. The character memory map is setup to allow 256 total

// characters. Characters index 0 through 31 are undefined, 32 through 127
// are pre-defined from the factory to a standard ASCII character, and 128 to
// 255 are undefined. To create a custom character you first draw the image
// that you want in an 8 by 8 matrix (as shown above). Once you have what you
// want you have to determine a value for each of the eight rows. At the

// bottom of each column there is a number starting at 128 under the left-most

// column. These numbers represent the value of each pixel that is turned on

// in that row. To get the byte value for a row you add up all the values for

// each pixel that is turned on.

char CreateCharacter(char idx, char row0, char rowl, char row2, char row3,
char row4, char row5, char row6, char row7)

{
ezVGABuffer[0] = V_CREATCHAR;
ezVGABuffer[1] = idx;
ezVGABuffer[2] = row0;
ezVGABuffer[3] = rowl;
ezVGABuffer[4] = row2;
ezVGABuffer[5] = row3;
ezVGABuffer[6] = row4;
ezVGABuffer[7] = row5;
ezVGABuffer[8] = row6;
ezVGABuffer[9] = row7;
ezVGABufferSize = 10;
// lssue command
return(ezVGAlssueCMD());

}

// This command enables you to draw a character that will “float” over the
// other characters on the screen without erasing or disturbing them in any way.
char FloatingChar(char idx, char mode, char color, int x, char y)
{
// Assemble the x values into high and low bits
char xHighByte = x >> 8;
char xLowByte = (char)x;

ezVGABuffer[0] = V_FLOATCHAR;
ezVGABuffer[1] = idx;
ezVGABuffer[2] = mode;
ezVGABuffer[3] = color;
ezVGABuffer[4] = xHighByte;
ezVGABuffer[5] = xLowByte;
ezVGABuffer[6] = y;

ezVGABufferSize = 7;

// lssue command
return(ezVGAlssueCMD());
}

// This command enables you to draw a line on the screen. Any type of straight
// and angled line can be drawn. Each line is defined by two points. The

// first is the starting point which is referred to as x1,yl. The second is
// the ending point which is x2,y2. A line can be erased from the screen by
// re-drawing it in the current background color.

char DrawLine(char color, int x1, char yl, int x2, char y2)

{
// Assemble the x values into high and low bits
char x1HighByte = x1 >> 8;
char xlLowByte = (char)x1l;
char x2HighByte = x2 >> 8;
char x2LowByte = (char)x2;
ezVGABuffer[0] = V_DRAWALINE;
ezVGABuffer[1] = color;
ezVGABuffer[2] = x1HighByte;
ezVGABuffer[3] = xlLowByte;
ezVGABuffer[4] = y1;
ezVGABuffer[5] = x2HighByte;
ezVGABuffer[6] = x2LowByte;
ezVGABuffer[7] = y2;
ezVGABufferSize = 8;
// lssue command
return(ezVGAlssueCMD());

3

// This command places a character on the screen. The character can be placed
// in a variety of different ways depending on your needs. The first option is
// characters can be placed as an opaque or as a transparent character. When a
// character is placed as an opaque all the pixels are drawn. The pixels that
// are off are drawn in the current background color and the pixels that are on
// are drawn in the character color. When drawn this way a character will
// completely overwrite whatever it is placed over. When a character is placed
// as a transparent then the pixels that are off are not drawn. Only the
// pixels that are on are drawn in the character color. This allows you to
// place a character over a background and the background will be visible
// through the off pixels of the character. Secondly, characters can be placed
// in normal or reverse mode.
char PlaceCharacter(char idx, char mode, char size, char color, int x, char y)
{

// Assemble the x values into high and low bits

char xHighByte = x >> 8;

char xLowByte = (char)x;

ezVGABuffer [0

vV
ezVGABuffer[1 i

] = V_PLACECHAR;
1 = idx;

ezVGABuffer[2] = mode;
ezVGABuffer[3] = size;
ezVGABuffer[4] = color;
ezVGABuffer[5] = xHighByte;
ezVGABuffer[6] = xLowByte;
ezVGABuffer[7] = vy;

ezVGABufferSize = 8;

// l1ssue command
return(ezVGAlssueCMD());
3

// This command is used to read a pixel from the screen. When executed the
// color of the pixel at the x,y position is read from the video memory and
// returned as a single byte.
char ReadPixel(int x, char y)

// Assemble the x values into high and low bits
char xHighByte = x >> 8;
char xLowByte = (char)x;

ezVGABuffer[0] = V_READPIXEL;
ezVGABuffer[1] = xHighByte;
ezVGABuffer[2] = xLowByte;
ezVGABuffer[3] = y;

ezVGABufferSize = 4;

// lssue command
return(ezVGAlssueCMD());
}

//This command is used to write a pixel to the screen.
char WritePixel(char color, int x, char y)

{
// Assemble the x values into high and low bits
char xHighByte = x >> 8;
char xLowByte = (char)x;
ezVGABuffer[0] = V_WRITPIXEL;
ezVGABuffer[1] = color;
ezVGABuffer[2] = xHighByte;
ezVGABuffer[3] = xLowByte;
ezVGABuffer[4] = y;
ezVGABufferSize = 5;
// lssue command
return(ezVGAlssueCMD());

}

// Mix colors
char MixColor(char Blue, char Green, char Red)

{

// Limit the color intensity to max
if(Blue > V_MAXINTENSITY)
{

Blue = V_MAXINTENSITY;

if(Green > V_MAXINTENSITY)
{

Green = V_MAXINTENSITY;
if(Red > V_MAXINTENSITY)

Red = V_MAXINTENSITY;
}

return(V_BLUE*Blue + V_GREEN*Green + V_RED*Red);

SoundGin Functions:
unsigned int SoundBufferSize = 0;
char SoundBuffer[6];

VZ4

// Assemble the command and send it out to the serial port

char IssueCommand(unsigned char Para, unsigned char Cmd, unsigned char Argl,
unsigned char Arg2, unsigned char Arg3, unsigned char Arg4) {

char index = 0;

// Set the global setting for the serial send interrupt
SoundBuffer[0] = S_CMD;

SoundBuffer[1] = Cmd;
SoundBuffer[2] = Argl;
SoundBuffer[3] = Arg2;
SoundBuffer[4] = Arg3;
SoundBuffer[5] = Arg4;
SoundBufferSize = Para + 2; // accound for cmd and the issue cmd

for(index=0; index<SoundBufferSize;index++)

while((SCIOSR1 & TDRE) == 0){};
SCIODRL = SoundBuffer[index];
}

return O;

}

//
// Reads the memory at the location specified by Reg.
// i.e.: 27,0,24 - Causes Oscillator Al"s Amplitude to be sent out TX.
char ReadOneByte(unsigned char Reg) {
return(lssueCommand(1, S_R1B, Reg, 0, 0, 0));

//

// \rites Byte at memory at the location specified by Reg.

// i.e.: 27,1,24,127 - Sets Oscillator Al"s Amplitude to 127

char WriteOneByte(unsigned char Reg, unsigned char Byte) {
return(IssueCommand(2, S_W1B, Reg, Byte, 0, 0)):;

//

// Writes two Bytes at memory at the location specified by Reg.

// i.e.: 27,1,20,163,1 - Sets Oscillator Al"s Frequency Target to 100Hz

char WriteTwoByte(unsigned char Reg, unsigned char Bytel, unsigned Byte2) {
return(IssueCommand(3, S_W2B, Reg, Bytel, Byte2, 0));

Va4
// Vrites three Bytes at memory at the location specified by Reg.
// i.e.: 27,1,17,110,163,1 - Sets Oscillator Al"s Frequency to 100.00Hz
char WriteThreeByte(unsigned char Reg, unsigned char Bytel,
unsigned char Byte2, unsigned char Byte3) {
return(lssueCommand(4, S_W3B, Reg, Bytel, Byte2, Byte3));
3

//

// Writes Byte masked with Mask at memory at the location specified by Reg.

// i.e.:27,4,0,2,255 - Causes Oscillator A2 to be included in Mixer A"s output.

char WriteOneByteWMask(unsigned char Reg, unsigned Byte, unsigned char Mask) {
return(IssueCommand(3, S_W1BM, Reg, Byte, Mask, 0)):

}

//
// Clears memory locations 0-127.
char ClearMixerAB(Q) {
return(lssueCommand(0, S_CMAB, 0, 0, 0, 0));

//

// Causes the oscillators to calculate a ramp value and then turn on
// the ramp and target options.

char RampToTargets(char A, char B) {

if(A & B) { // ramp both mixers
return(IssueCommand(0, S_RTAB, 0, 0, 0, 0));
} else if(A) { // ramp only mixer A
return(IssueCommand(0, S_RTA, 0, 0, 0, 0));
} else { // ramp only mixer B
return(lssueCommand(0, S_RTB, 0, 0, 0, 0));
3
}
Va4

// Sets the Voice frequency to the specified musical note frequency.
char SetVoiceNote(unsigned char Note)

return(IssueCommand(1, S_SVN, Note, 0, 0, 0)):
}

//
// Sets the Voice frequency to the specified musical note frequency.
char SetVoiceFreq(unsigned int Freq) {

// break apart the freq to be stored in 2 chars
unsigned char lower = (unsigned char) Freq;
unsigned char upper = (unsigned char) (Freq >> 8);

return(IssueCommand(2, S_SVF, upper, lower, 0, 0));
3

//

// Sets the Voice delay to the specified 8-Bit amount.

char SetVoiceDelay(unsigned char Delay)
return(IssueCommand(1, S_SVD, Delay, 0, 0, 0)):

3

//
// Sets the Voice options to the default values.
char SetVoiceDefault() {

return(IssueCommand(0, S_SVDEF, 0, 0, 0, 0));

//
// Turns the Q line on.
char SetQon() {
return(lssueCommand(0, S_QON, O, 0, 0, 0));

//
// Turns the Q line off.
char SetQOff() {
return(lssueCommand(0, S_QOFF, 0, 0, 0, 0));
¥

//
// Clears memory locations for mixer and its associated oscillators.
char ClearMixerOscillators(char A) {

if(A) { // clear mixer A
return(lssueCommand(0, S_CMOA, 0, 0, 0, 0));
} else { // clear mixer B
return(IssueCommand(0, S_CMOB, 0, O, 0, 0));
3
3
//

// Sets the oscillator™s frequency to the specified musical note frequency.
char LoadINote(char Osc, unsigned char Note) {
switch(0Osc) {

case EO_Al: return(lssueCommand(l, S_LNOAl, Note, O, 0, 0));
case EO_A2: return(lssueCommand(l, S_LNOA2, Note, 0, 0, 0));
case EO_A3: return(lssueCommand(l, S_LNOA3, Note, 0, 0, 0));
case EO_B1: return(lssueCommand(l, S_LNOB1, Note, O, 0, 0));
case EO_B2: return(lssueCommand(l, S_LNOB2, Note, 0, 0, 0));
case EO_B3: return(lssueCommand(l, S_LNOB3, Note, 0, 0, 0));
3
}
//

// Sets the mixer and its associated oscillators to a predefined sound.
// 27,75,3 - Set the Oscillators in Mixer A to sound 3.
char LoadSound(char A, unsigned char Sound) {

if(A) { // load sound into mixer A
return(lssueCommand(1, S_LSMA, Sound, 0, 0, 0));
} else { // load sound into mixer B

return(IssueCommand(1, S_LSMB, Sound, 0, 0, 0));

}

//
// Sets the oscillator™s frequency to the specified 16-bit frequency.
char LoadFreq(char Osc, unsigned int Freq) {

// break apart the freq to be stored in 2 chars

unsigned char lower = (unsigned char) Freq;

unsigned char upper = (unsigned char) (Freq >> 8);

switch(0Osc) {
case EO_Al: return(lssueCommand(2, S_LFOA1l, upper, lower, O,
case EO_A2: return(lssueCommand(2, S_LFOA2, upper, lower, O,
case EO_A3: return(lssueCommand(2, S_LFOA3, upper, lower, O,
case EO_B1: return(lssueCommand(2, S_LFOB1, upper, lower, 0, 0));
case EO_B2: return(lssueCommand(2, S_LFOB2, upper, lower, O, H
case EO_B3: return(lssueCommand(2, S_LFOB3, upper, lower, 0, 0));

0))5

}

//

// Play the oscillator in its current settings.

char PlayCurrentOscillator(char Osc) {
switch(Osc) {

case EO_Al: return(lssueCommand(0, S_PCOAl1, 0, 0, 0, 0));
case EO_A2: return(lssueCommand(0, S_PCOA2, 0, 0, 0, 0));
case EO_A3: return(lssueCommand(0, S_PCOA3, 0, 0, 0, 0)):;
case EO_B1: return(lssueCommand(0, S_PCOB1, 0, 0, 0, 0));
case EO_B2: return(lssueCommand(0, S_PCOB2, 0, 0, 0, 0));
case EO_B3: return(lssueCommand(0, S_PCOB3, 0, 0, 0, 0));

//
// Play the mixer in its current settings.
char PlayCurrentMixer(char A) {

if(A) { // play mixer A
return(lssueCommand(0, S_PCMA, 0, 0, 0, 0));
} else { // play mixer B
return(lssueCommand(0, S_PCMB, 0, 0, 0, 0));
3
//

// Release the oscillator of its current settings.
char ReleaseOscillator(char Osc) {
switch(Osc) {

case EO_Al: return(lssueCommand(0, S_ROAl, O,
case EO_A2: return(lssueCommand(0, S_ROA2, O,
case EO_A3: return(lssueCommand(0, S_ROA3, O,
case EO_B1: return(lssueCommand(0, S_ROB1, O,
case EO_B2: return(lssueCommand(0, S_ROB2, O,
case EO_B3: return(lssueCommand(0, S_ROB3, O,
3
}
//

// Release the mixer of its current settings.
char ReleaseMixer(char A) {
if(A) { // release mixer A
return(IssueCommand(0, S_RMA, 0, 0, 0, 0));

else { // release mixer B
return(lssueCommand(0, S_RMB, 0, 0, 0, 0));

}
//

0

[elelojoaole)

0));

// Sets the oscillator®s frequency to the specified musical note

// frequency and start the envelope.

// 27,88,64 - Sets Oscillator Al"s frequency to C4 (Middle-C) and

// starts the envelope
char LoadPlayNote(char Osc, unsigned char Note) {
switch(0sc) {

case EO_Al: return(lssueCommand(l, S_LPNOA1,
case EO_A2: return(lssueCommand(l, S_LPNOA2,
case EO_A3: return(lssueCommand(l, S_LPNOA3,
case EO_B1: return(lssueCommand(l, S_LPNOB1,
case EO_B2: return(lssueCommand(l, S_LPNOB2,
case EO_B3: return(lssueCommand(l, S_LPNOB3,

}
//

Note, 0, O, 0));
Note, 0, O, 0));
Note, 0, 0, 0));
Note, 0, O, 0));
Note, 0, O, 0));
Note, 0, 0, 0));

// Sets the oscillator"s frequency to the specified 16-bit frequency

// and starts the envelope.

char LoadPlayFreq(char Osc, unsigned int Freq) {
// break apart the freq to be stored in 2 chars

unsigned char lower = (unsigned char) Freq;

unsigned char upper = (unsigned char) (Freq >> 8)

switch(Osc) {
case EO_Al: return(lssueCommand(2, S_LPFOA1,
case EO_A2: return(lssueCommand(2, S_LPFOA2,
case EO_A3: return(lssueCommand(2, S_LPFOA3,
case EO_B1: return(lssueCommand(2, S_LPFOB1,
case EO_B2: return(lssueCommand(2, S_LPFOB2,
case EO_B3: return(lssueCommand(2, S_LPFOB3,

}

//
// Reset to voice parameters.
char ResetVoiceParameter(char A) {

if(A) { // reset voice A
return(lssueCommand(0, S_RVPA, 0, 0, 0, 0));
} else { // reset voice B

return(IssueCommand(0, S_RVPB, 0, 0, 0, 0));

; // Got it pete.

upper, lower,
upper, lower,
upper, lower,
upper, lower,
upper, lower,
upper, lower,

[ejejojeloNa]

2. Tron Bike Knockoff Specific Code

// Blue variables
unsigned int m_Blue_PosX;
unsigned char m_Blue_PosY;
char m_Blue_Dir;

char m_Blue_Color;

char m_Blue_Life;

// Red variables
unsigned int m_Red_PosX;
unsigned char m_Red_PosY;
char m_Red_Dir;

char m_Red_Color;

char m_Red_Life;

// Main Function
int mainQ)

// Declare splash screen text

char BWString[9] "BLUE WINS";

char RWString[8] "RED WINS";

char TieString[9] = "GAME DRAW";

char TitleString[20] = "Tron Bike: Knockoff!";
char PSString[18] = "Push Start to Play";

// Splash screen music
unsigned char SCMusic[12]
unsigned char SCMTime[12]
char MTimeLeft = O;

char MIndex = 0;

char MStart = 0;

// Setup the colors
char Status = WFSTART;

// General purpose for loop index counter
int index;

// First call the Init function to intialize all the I0.

mnitQ;

// Write to the EEPROM max Life value
WriteEEPROM(10, MAXLIVES); // Blue
WriteEEPROM(20, MAXLIVES); // Red

// Then configure the sound envelope to our pleasing
WriteOneByteWMask(30, Oxf0, Oxe0);
WriteOneByteWMask(30, 15, 244);

// Stop the sound
ReleaseOscillator(EO_A1);

// Main loop.
while(1)
{

// Wait for the RTI flag to be set.
if(RTIFlag)

RTIFlag = 0O; // First thing we do is clear the flag.
/* User code goes here. */

// Get the controller input
GetContData();

switch(Status)

{

{E3, E3, E3, C3, E3, G3, G3, C3, G3, E3, A3,
{10, 20, 20, 10, 20, 20, 20, 30, 20, 30, 20,

B3}
30};

// Waiting for start state, user must hit start to start the game

case WFSTART:
if((m_Blue_Life == 0) || (m_Red_Life == 0))
{

WriteEEPROM(10, MAXLIVES); // Blue
WriteEEPROM(20, MAXLIVES); // Red

// Wait for about 2s for the final score.
for(index=0; index<60; index++)

{

while(RTIFlag == 0); // Wait for RTIFlag to be set.

RTIFlag = O; // Clear it.

// Write the SPLASH Waiting for Start screen
ClearScreen(BLACK) ;
for(index=0; index<20; index++)

PlaceCharacter(TitleString[index], 0, 2, GREEN, 15+(15*index), 80);

for(index=0; index<18; index++)

PlaceCharacter(PSString[index], O, 1, GREEN, 70+(10*index), 140);

// Get the lives remaining

m_Blue_Life = ReadEEPROM(10);
m_Red_Life = ReadEEPROM(20);

// Start intro music

MStart = 1;
MTimeLeft = O;
MIndex = 0;

// Play intro music
if(MStart == 1)

if(MTimeLeft == 0)
{

// Check Index
if(MIndex > 12)

MIndex = 0;
MTimeLeft = SCMTime[MIndex];
LoadPlayNote(EO_Al, SCMusic[MIndex]);
MIndex = MIndex + 1;

else
MTimeLeft = MTimeLeft - 1;

}

Status = StartGame();
break;

// Initialize arena state, user has hit start and the game begins
case STARTED:

// Stop the sound

ReleaseOscillator(EO_Al);

MStart = 0;

InitArenaQ);

// Get the lives remaining
m_Blue_Life = ReadEEPROM(10);
m_Red_Life = ReadEEPROM(20);

for(index=0; index<10;index++) {
unsigned int BlockX = Rand() % 319;
unsigned char BlockY = Rand() % 239;

if(((BlockX > 85) || (BlockX < 79)) &&
((BlockX > 245) || (BlockX < 239)) &&
((BlockY > 65) || (BlockY < 59)) &&
((BlockY > 185) || (BlockY < 179)))

ClearArea(GREEN, BlockX, BlockY, BlockX-1, BlockY-1);
3

// Light the LED according the the lives remaining (out of 4)
for(index=0; index<8; index++)

if(index <= m_Blue_Life-1)
SetPWMDuty(index, OxFF);
else if(index >= (8 - m_Red_Life))
SetPWMDuty(index, OXxFF);
else
SetPWMDuty(index, 0x00);
¥

Status = RUNNING;
break;

// Running State, the game is in progress
case RUNNING:

// Write to screen the Blue Player
ClearArea(BLUE, m_Blue_PosX, m_Blue_PosY,
m_Blue_PosX-1, m_Blue_PosY-1);

// Write to screen the Red Player
ClearArea(RED, m_Red_PosX, m_Red_PosY,
m_Red_PosX-1, m_Red_PosY-1);

// Parse the controller command
ParseController();

// Move the players and get the new status
Status = MovePlayers();

// Check the case
switch(Status)

case BOTHDIE:
// Clear screen and write the words Draw
ClearScreen(BLACK);
for(index=0; index<9; index++)

PlaceCharacter(TieString[index], 0, 2, Ox3f, 20+(32*index), 120);

// Play lose tone
//LoadPlayNote(EO_Al, E3)

// Write to EEPROM both new life counts

WriteEEPROM(10, m_Blue_Life-1); // Blue
WriteEEPROM(20, m_Red_Life-1); // Red
break;

case REDDIED:
// Clear screen and write the words Wins in blue
ClearScreen(BLACK) ;
for(index=0; index<9; index++)
PlaceCharacter(BWString[index], 0, 2, BLUE, 20+(32*index), 120);

// Play winning tone
//LoadPlayNote(EO_A1, C3)

// Write to EEPROM both new life counts

WriteEEPROM(10, m_Blue_Life); // Blue
WriteEEPROM(20, m_Red_Life-1); // Red
break;

case BLUEDIE:
// Clear screen and write the words Wins in red
ClearScreen(BLACK);
for(index=0; index<8; index++)
PlaceCharacter(RWString[index], 0, 2, RED, 36+(32*index), 120);

// Play winning tone
//LoadPlayNote(EO_A1, C3)

// Write to EEPROM new blue life count

WriteEEPROM(10, m_Blue_Life-1); // Blue
WriteEEPROM(20, m_Red_Life); // Red
break;

} 7/ end switch

// Current game ends, switch back to waiting for start state
if(Status 1= RUNNING) {
Status = WFSTART;

// Stop the sound
ReleaseOscillator(EO_A1);

break;
} // end switch status
} // end if RTIFlag
} 7/ end while

return 0O;

char StartGame()

char Start = WFSTART;

// Start command

if((ContP1 & 0x10) == 0)
Start = STARTED;

// Start command

if((ContP2 & 0x10) == 0)
Start = STARTED;

return Start;

}

void ParseController()

// Right command
if((ContP1 & 0x01) == 0)

if(m_Blue_Dir !
m_Blue_Dir

ETBD_Left)
ETBD_Right;

¥

// Left command
if((ContPl & 0x02) == 0)

if(m_Blue_Dir != ETBD_Right)
m_Blue_Dir = ETBD_Left;
3

// Down command
if((ContPl & 0x04) == 0)

if(m_Blue_Dir !
m_Blue_Dir

ETBD_Up)
ETBD_Down;

}

// Up command
if((ContP1 & 0x08) == 0)

if(m_Blue_Dir !'= ETBD_Down)

m_Blue_Dir = ETBD_Up;

// Right command
if((ContP2 & 0x01) == 0)

if(m_Red_Dir != ETBD_Left)
m_Red_Dir = ETBD_Right;
3

// Left command
if((ContP2 & 0x02) == 0)

if(m_Red_Dir != ETBD_Right)
m_Red_Dir = ETBD_Left;
}

// Down command
if((ContP2 & 0x04) == 0)

if(m_Red_Dir 1= ETBD_Up)
m_Red_Dir = ETBD_Down;
}

// Up command
if((ContP2 & 0x08) == 0)

if(m_Red_Dir != ETBD_Down)
m_Red_Dir = ETBD_Up;

}

// Initialize the arena and the players
void InitArena(Q)

{
// Clear all of the playing field on screen
ClearScreen(BLACK);
// Draw Boarder
DrawLine(GREEN, 0, O, 319, 0);
DrawLine(GREEN, 0, 0, 0, 239);
DrawLine(GREEN, 0, 239, 319, 239);
DrawLine(GREEN, 319, 0, 319, 239);
// Set up the blue player
m_Blue_PosX = 80;
m_Blue_PosY = 60;
m_Blue_Color = ETBC_Blue;
m_Blue_Dir = ETBD_Right;
// Set up the red player
m_Red_PosX = 240;
m_Red_PosY = 180;
m_Red_Color = ETBC_Red;
m_Red_Dir = ETBD_Left;
// Play start tone
LoadPlayNote(EO_Al, C3);

}

// Move the players and determine if they have not run into the wall or
// the other player-”s trail.
char MovePlayers() {

char Result = RUNNING;
LoadPlayNote(EO_Al, F3);

// Move the blue player
switch(m_Blue_Dir)

case ETBD_Up:
m_Blue_PosY = m_Blue_PosY - 2;
break;

case ETBD_Right:
m_Blue_PosX = m_Blue_PosX + 2;
break;

case ETBD_Down:
m_Blue_PosY = m_Blue_PosY + 2;
break;

case ETBD_Left:
m_Blue_PosX = m_Blue_PosX - 2;
break;

¥

// Check if blue player is still alive

if((m_Blue_PosX > 1) && (m_Blue_PosX < ARENAWIDTH-1) &&
(m_Blue_PosY > 1) && (m_Blue_PosY < ARENAHEIGHT-1))

{

// Check the lower right of the current move
ReadPixel (m_Blue_PosX, m_Blue_PosY);
if(ezVGAReturn != BLACK)

Result = BLUEDIE;

// Play wall tone
LoadPlayNote(EO_Al, D3);

by

// Check the upper left of the current move
ReadPixel (m_Blue_PosX, m_Blue_PosY);
if(ezVGAReturn != BLACK)

Result = BLUEDIE;

// Play wall tone
LoadPlayNote(EO_Al, D3);

3
else
Result = BLUEDIE;

// Play crash tone
LoadPlayNote(EO_Al, E3);
}

// Move the red player
switch(m_Red_Dir)
{

case ETBD_Up:
m_Red_PosY = m_Red_PosY - 2;
break;

case ETBD_Right:
m_Red_PosX = m_Red_PosX + 2;
break;

case ETBD_Down:
m_Red_PosY = m_Red_PosY + 2;
break;

case ETBD_Left:
m_Red_PosX = m_Red_PosX - 2;
break;

}

// Check if red player is still alive
if((m_Red_PosX > 1) && (m_Red_PosX < ARENAWIDTH-1) &&
(m_Red_PosY > 1) && (m_Red_PosY < ARENAHEIGHT-1))

// Check lower right of the current move
ReadPixel (m_Red_PosX, m_Red_PosY);
if(ezVGAReturn != BLACK)

{

if(Result == BLUEDIE)
Result = BOTHDIE;
else
Result = REDDIED;

// Play wall tone
LoadPlayNote(EO_Al, D3);

by

// Check the upper left of the current move
ReadPixel (m_Red_PosX-1, m_Red_PosY-1);
if(ezVGAReturn != BLACK)

{
if(Result == BLUEDIE)
Result = BOTHDIE;
else
Result = REDDIED;
// Play wall tone
LoadPlayNote(EO_Al, D3);
3
else

if(Result == BLUEDIE)
Result = BOTHDIE;
else
Result = REDDIED;

// Play crash tone
LoadPlayNote(EO_Al, E3);
}

// Check case where the two occupies the same space

if((m_Red_PosX == m_Blue_PosX) && (m_Red_PosY == m_Blue_PosY))
Result = BOTHDIE;

3

return Result;

3. Kill Kevin Specific Code

int mainQ)

//

// Here we have the data needed for the Splash Screen State machine.

//

// Splash Screen state machine variable.
volatile unsigned int SplashState = 0;

// Splash Screen strings that are displayed.
char KKString[10] = "KILL KEVIN";

char PSString[18] = "Push Start to Play";
char PSelString[19] = "Push Select to Load";
char P1ScoreString[11] = H
char P2ScoreString[11] =
char ReadyString[5] = "READY";

// Index for displaying strings.
volatile int Splashlndex=0;

// RTI1 counter for keeping track of time.
volatile unsigned int SplashRTI = 0;
volatile unsigned int VeryEndRTI = O;

//
// Here we have the data needed for the Game Music State machi
//

ne.

// Intro music is from 2001. Here are the notes and their duration.

unsigned char IntroNote[18] = {A4s, F5, A5s, D6, C6s, G5, A5,
unsigned int IntroDur[18] = {60, 60, 120, 15, 75, 15, 15,

unsigned char WinNote[24] = {D6, C6, D6, C6, A5s, A6s, A6, A6s, A6, G6, A6, F6, A6s, A6, F6, A6s, G6s, F6, A6s,

Gés, F6, D6s, C6, F6};

8,

unsigned int WinDur[24] = {23, 15, 8, 23, 23, 23, 15, 8,
8, 60};

// Index to index the music notes and duration.
volatile int Musiclndex=0;

// Counter used to determine if we are done with the music.
volatile unsigned char NoteCounter = 0;

// RTI1 counter for keeping track of time.
volatile unsigned int SoundRTl = O;
volatile unsigned int AnnoyingRTI = 0;

// Flags for control.

volatile char GMFlag = 0;
volatile char WinFlag = 0;
volatile char AnnoyingFlag = 0;
volatile char GNFlag = O;

// Music state machine variable.
volatile unsigned int MusicState = 0;

// Variable for the dynamic duration of the Game Music.
volatile unsigned char GDur;

// Temp for Random numbers.
volatile unsigned int SplashTemp;

//

A5s, C6, D6, D6s,
60, 30, 15, 15,

23, 23, 28, 15, 8,

// Here we have the data needed for the Select State machine.
//

// Select state machine variable.
volatile unsigned int SelectState = 0;

// Strings for the Select SM

char ResumeString[6] = '‘Resume;
char RestoreString[7] = '"Restore';
char SaveString[4] = "'Save";
char DoneString[4] = “'Done";

char RTOString[26] "Kevin is a Right Turn Only";

// Index for the Select SM strings.
volatile unsigned char Sellndex;

// Variable that determine what we are selecting.
volatile unsigned char SelVvar;

// Variable for the Select SM RTI counter.
volatile unsigned char SelRTI;

//

// Here we have the data needed for the Player State machines.
//

// Strings for Player Wins.
char PIWinString[9] = "P1 WINSII™;
char P2WinString[9] = "P2 WINS!!';

// Indexes for the strings.

F6, D6, D6s,
90, 8, 8,

23, 15, 8,

F6,

23,

G6, A6, A6s};
60, 40, 60, 80};

15,

8,

23,

30,

volatile unsigned char Plindex, P2Index;

// Select state machine variable.
volatile unsigned int PlayerlState
volatile unsigned int Player2State

mnn
[eNe]

// Temp variable.
volatile unsigned int P1Temp,P2Temp;

// RTI1 counter for keeping track of time.
volatile unsigned int P1RTI = O;
volatile unsigned int P2RTI = O;

// Color Array.
unsigned char ColorArray[6] = {Ox1f, 0xOc, 0x07, 0x22, Ox3d, Ox1b};
volatile unsigned char P1CIndex, P2CIndex;

VZ4
// Here we have variables used by multiple state machines.
//
// Flag to indicate that we have in fact started.
volatile unsigned char Started=0;

// Flag to indicate that we don"t need get random number as we have loaded.
volatile unsigned char Loaded=0;

// Random Player indexes that indicate where we are in the Random Array.
volatile unsigned char P1RandIndex=0, P2RandIndex=0;

// Random Array that stores the random numbers.
unsigned int RandArray[NUMOFRAND];

// First call the Init function to intialize all the 10.
mnitQ;

// Then configure the sound envelope to our pleasing
WriteOneByteWMask(30, Oxf0, Oxe0);
WriteOneByteWMask(30, 15, 244);

// Main loop.
while(1)

// Wait for the RTI flag to be set.
if(RTIFlag)
{

RTIFlag = O; // First thing we do is clear the flag.

// We will always get the controller data so do that first.
GetContData();

// This is the Splash screen state machine. It will the be the
// Tirst state machine that will run.

switch(SplashState)

{

case SHalt: SplashState = SHalt;
break;

// At the very end we wait for the user to push a button. When
// they do we start the whole game over.
// First wait for the user to stop pushing a button.
case VeryEnd: Loaded=0;Started=0;
if(ContP1l == Oxff && ContP2 == Oxff)
SplashState = VeryEnd+1;

VeryEndRTl = O;
break;

// Now wait two seconds.
case VeryEnd+l: if(VeryEndRTI == 60)
SplashState = VeryEnd+2;

VeryEndRT I++;
break;

// Then wait until we push something.
case VeryEnd+2: if(ContPl != Oxff || ContP2 != Oxff)

MusicState = MSHalt; // Stop the Music SM.
SplashState = SState; // Start all over.
SplashState = VeryEnd+3;

break;

// Then wait until we are done pushing everything.
case VeryEnd+3: if(ContPl == Oxff && ContP2 == Oxff)
SplashState = SState;
break;

// First we display the strings on the screen.
case SState: ClearScreen(0x00) ; // Clear the screen.

// Draw the Splash Screen strings.
for(Splashlndex=0;Splashlndex<10;SplashIndex++)

PlaceCharacter(KKString[Splashindex], 0, 3, 0x03, 50+(20*Splashindex), 80);

for(Splashlndex=0;Splashlndex<18;SplashIndex++)
PlaceCharacter(PSString[Splashindex], 0, 1, Ox3f, 60+(10*Splashindex), 120);

for(Splashlndex=0;Splashlndex<19;SplashIndex++)
PlaceCharacter(PSelString[Splashindex], 0, 1, Ox3f, 56+(10*Splashindex), 140);

if(Loaded == 0) // Check to see if we have loaded a game.
// 1f we have not then
P1RandIndex=0; // clear the Rand number indexes for both players.
P2RandIndex=0;

}

MusicState = MIState; // Start the Music Intro.
SplashState = SState+l; // Goto next state.
break;

// Wait for user input.

case SState+1:

if((ContPl & START) == 0 || (ContP2 & START) == 0)
SplashState = SState + 3;

if((ContP1l & SEL) == 0 || (ContP2 & SEL) == 0)
SplashState = SState + 2;

break;

// 1f the user pushes Select then they want to load a game.

case SState+2:

MusicState = MSHalt; // Halt the music.
SplashState = SHalt; // Halt us.
SelectState = SelStart; // Start the Select State Machine.

break;

// 1f the user pushes start then work towards playing the game.

case SState+3:

case SState+4:

MusicState = MSHalt; // Halt the music.

Started = 1; // Indicate that we have started.
SplashState = SState+4; // Goto the next state.

// 1f we have loaded up a previous game then
// we don"t need to get any more random numbers.
if(Loaded)

break;

Seed(); // Seed the Random number generator.

// Call the Rand() function 16 times to Roll

// all the way through the shift register one

// time.

for(Splashlndex=0;Splashlndex<16;SplashIndex++)
Rand(Q);

// Fill the RandArray with random numbers. Be sure that
// the numbers are between 0 and 5.
for(Splashlndex=0;SplashIndex<NUMOFRAND;SplashIndex++)

do

SplashTemp = Rand() & 0x07;
3
while(SplashTemp > 5);

RandArray[Splashindex] = SplashTemp;
3

break;
ClearScreen(0x00) ; // Clear the screen.

// Draw the outline.
DrawLine(Ox2A, 0, 0, 319, 0);
DrawLine(Ox2A, 0, 0, 0, 239);
DrawLine(Ox2A, 0, 239, 319, 239);
DrawLine(Ox2A, 319, 0, 319, 239);
DrawLine(Ox2A, 160, 0, 160, 239);

// Draw Kill Kevin.
for(Splashlndex=0;Splashlndex<10;SplashIndex++)
PlaceCharacter(KKString[Splashlndex], 0, 1, 0x03, 112+(10*Splashlndex), 5);

// Draw P1 and P2 Score.

for(Splashlndex=0;Splashindex<11;SplashlIndex++)
PlaceCharacter(P1ScoreString[Splashindex], 0, 1, Ox3f, 10+(10*Splashindex), 25);

for(Splashlndex=0;Splashindex<11;SplashlIndex++)
PlaceCharacter(P2ScoreString[Splashindex], 0, 1, Ox3f, 170+(10*Splashlndex), 25);

// Draw the Crosses.

ClearArea(Ox3f, 78, 70, 82, 170);
ClearArea(Ox3f, 30, 118, 130, 122);
ClearArea(0Ox3f, 238, 70, 242, 170);
ClearArea(Ox3f, 190, 118, 290, 122);

// Draw Ready.
for(Splashlndex=0;Splashindex<5;SplashiIndex++)
PlaceCharacter(ReadyString[Splashindex], 0, 3, Ox2E, 109+(20*Splashindex), 140);

// Place the countdown. Start with 3.
PlaceCharacter("3", 0, 3, 0x27, 148, 190);

// Clear the RTI counter.

SplashRTI = 0;

SplashState = SState+5; // Goto the next state.
break;

// Wait 3 seconds before actually beginning. Countdown the time
// in seconds. When ready clear Ready and number and halt.
case SState+5: if(SplashRTl == 30)

PlaceCharacter("2*, 0, 3, 0x1B, 148, 190);

if(SplashRTl == 60)

PlaceCharacter("1", 0, 3, Ox1F, 148, 190);
if(SplashRTI == 90)
{

ClearArea(0x00, 109, 140, 220, 220); // Clear Ready and number.
DrawLine(Ox2A, 160, 0, 160, 239); // Redraw our middle line.
PlayerlState = P1State; // Start P1 SM.
Player2State = P2State; // Start P2 SM.

MusicState = MGState; // Start the Game Music.
SplashState = SHalt; // Halt ourselves.
P1CIndex RandArray[0] & 0x3; // Determine starting Color index.

P2CIndex P1CIndex;

¥

// Increment the RTI counter no matter what.
SplashRTI++;

break;

}

// This is the Playerl state machine.
switch(PlayerilState)
{

// Begin in the halt state. Stay halted until the Splash SM
// takes us out.
case Halt: PlayeriState = Halt;

break;

// First thing we"ll do is update the PWM. The farther we get
// the more the LEDs will light up.
case PlState: // Right most Green LED.
if(P1RandIndex < 3 && P1lRandIndex > 0)
SetPWMDuty (3, 0x40);
else if(P1RandIndex < 6 && P1lRandIndex > 0)
SetPWMDuty (3, 0x80);
else if(P1RandIndex < 9 && P1RandIndex > 0)
SetPWMDuty (3, 0xc0);
else if(P1RandIndex < 12 && P1lRandIndex > 0)
SetPWMDuty (3, Oxff);
else if(P1RandIndex == 0)
SetPWMDuty (3, 0x00);

// Next Green LED.

if(P1RandIndex < 15 && P1lRandlndex >= 12)
SetPWMDuty(2, 0x40);

else if(P1RandIndex < 18 && P1lRandlIndex >= 12)
SetPWMDuty(2, 0x80);

else if(P1RandIndex < 21 && P1lRandIndex >= 12)
SetPWMDuty(2, 0xc0);

else if(P1RandIndex < 24 && P1lRandIndex >= 12)
SetPWMDuty (2, Oxff);

else if(P1RandIndex < 12)
SetPWMDuty(2, 0x00);

// Red LED.

if(P1RandIndex < 27 && P1RandIndex >= 24)
SetPWMDuty (1, 0x40);

else if(P1RandIndex < 30 && P1lRandlIndex >= 24)
SetPWMDuty (1, 0x80);

else if(P1RandIndex < 33 && P1lRandIndex >= 24)
SetPWMDuty(1, 0xc0);

else if(P1RandIndex < 36 && P1lRandlIndex >= 24)
SetPWMDuty (1, Oxff);

else if(P1RandIndex < 24)
SetPWMDuty(1, 0x00);

// Blue LED.

if(P1RandIndex < 39 && P1RandIndex >= 36)
SetPWMDuty (O, 0x40);

else if(P1RandIndex < 42 && P1lRandlIndex >= 36)
SetPWMDuty (0, 0x80);

else if(P1RandIndex < 45 && P1lRandIndex >= 36)
SetPWMDuty (0O, 0xc0);

else if(P1RandIndex < 36)
SetPWMDuty (O, 0x00);

else

SetPWMDuty (0, Oxff);

PlayeriState = P1State+l;
break;

/7 Now display the tens digit of the score.
case PlState+l: if(P1RandIndex < 10)
PlaceCharacter("0", 0, 1, Ox3F, 120, 25);

else if(P1RandIndex < 20)
PlaceCharacter(*1", 0, 1, Ox3F, 120,
else if(P1RandIndex < 30)
PlaceCharacter("2", 0, 1, Ox3F, 120,
else if(P1RandIndex < 40)
PlaceCharacter(*3", 0, 1, Ox3F, 120,
else if(P1RandIndex < 50)
PlaceCharacter("4", 0, 1, Ox3F, 120,
else
PlaceCharacter("5", 0, 1, Ox3F, 120,

PlayerlState = P1State+2;
break;

/7 Now display the ones digit of the score.

case PlState+2:

if(P1RandIndex < 10)

P1Temp = P1RandIndex+0x30;
else if(P1RandIndex < 20)

P1Temp = (P1RandIndex-10) + 0x30;
else if(P1RandIndex < 30)

P1Temp = (P1RandIndex-20) + 0x30;
else if(P1RandIndex < 40)

P1Temp = (P1RandIndex-30) + 0x30;
else if(P1RandIndex < 50)

P1Temp = (P1RandIndex-40) + 0x30;
else

P1Temp = 0x30;

PlaceCharacter(P1Temp, 0, 1, Ox3F, 130,
PlayerlState = P1State+3;
break;

// Clear upper and lower boxes.

case PlState+3:

// Clear left and
case PlState+4:

ClearArea(0x00, 78, 64, 82, 68);
ClearArea(0x00, 78, 172, 82, 176);

PlayerlState = PlState+4;
break;

right boxes.
ClearArea(0x00, 24, 118, 28, 122);
ClearArea(0Ox00, 132, 118, 136, 122);

PIRTI = 0;
PlayerlState = P1State+5;
break;

// Wait for player to not push any buttons.

case PlState+5:

if(ContP1l == Oxff)
PlayerlState = P1State+6;

break;

// Determine color and location of box(es).

case PlState+6:

P1CIndex++; // Increment color index to next color.
if(P1CIndex == 6) // If we raech six then roll over to zero.
P1CIndex = 0;

// Based on the random number determine

// boxes we should draw in.

if(RandArray[P1RandIndex] == 0)
ClearArea(ColorArray[P1CIndex], 78,

else if(RandArray[P1RandIndex] == 1)
ClearArea(ColorArray[P1CIndex], 78,

else if(RandArray[P1RandIndex] == 2)

{

ClearArea(ColorArray[P1CIndex], 78,
ClearArea(ColorArray[P1CIndex], 78,

}

else if(RandArray[P1RandIndex] == 3)
ClearArea(ColorArray[P1CIndex], 24,

else if(RandArray[P1RandIndex] ==

ClearArea(ColorArray[P1CIndex], 132, 118, 136, 122);

else if(RandArray[P1RandIndex] == 5)

ClearArea(ColorArray[P1CIndex], 24,

ClearArea(ColorArray[P1CIndex], 132, 118, 136, 122);

PlayerlState = P1State+7;
break;

// Wait for user input.

case PlState+7:

if(ContP1 == Oxff) // If user have inpu
{

PlayerlState = PlState+7;
break;

25);
25);
25);
25);

25);

25);

what

64, 82, 68);

172, 82, 176);

64, 82, 68);
172, 82, 176);

118, 28, 122);

118, 28, 122);

t nothing.

3
else if((ContPl & START) == 0 || (ContPl1l & SEL) == 0) // Check for start or
{

Player2State Halt;
PlayeriState Halt;
MusicState = MSHalt;
SelectState = SelStart;

// If we get a start or sel then
// Halt both player SMs, the Music SM
// and start the Select SM.

select.

break;

// Else check to see if what the user input was correct.

else if((ContPl & UP) == 0 && RandArray[P1RandIndex] == 0)
P1RandIndex++;

else if((ContP1l & DOWN) == 0 && RandArray[P1RandIndex] == 1)
P1RandIndex++;

else if((ContPl & B) == 0 && RandArray[P1RandlIndex] == 2)
P1RandIndex++;

else if((ContPl & LEFT) == 0 && RandArray[P1RandIndex] == 3)
P1RandIndex++;

else if((ContP1l & RIGHT) == 0 && RandArray[P1lRandIndex] == 4)
P1RandIndex++;

else if((ContPl & A) == 0 && RandArray[P1lRandIndex] == 5)
P1RandIndex++;

// Else the input was incorrect so pay the penalty.
else
{
// Must go back a certain amount.
if(P1RandIndex < BACKAMOUNT)
P1RandIndex=0;
else
P1RandIndex -= BACKAMOUNT;

// Play an annoying sound to indicate mistake.
AnnoyingFlag = 1;

// See if we are done.
if(P1RandIndex == NUMOFRAND)
{

// Display the 50
PlaceCharacter("5", 0, 1, Ox3F, 120, 25);
PlaceCharacter("0", 0, 1, Ox3F, 130, 25);

// Display P1 WINS!!
for(P1lIndex=0;P1lIndex<9;PlIndex++)
PlaceCharacter(P1WinString[PlIndex], 0, 1, Ox2E, 121+(10*Plindex), 140);

// If we are then set the win flag and Halt.

WinFlag = 1;
Player2State = Halt;
PlayerlState = Halt;

SplashState = VeryEnd;

else
PlayerlState = PlState;

break;
3
// This is the Player2 state machine.
switch(Player2State)

// Begin in the halt state. Stay halted until the Splash SM
// takes us out.
case Halt: Player2State = Halt;

break;

// First thing we"ll do is update the PWM. The farther we get
// the more the LEDs will light up.
case P2State: // Right most Green LED.
if(P2RandIndex < 3 && P2RandIndex > 0)
SetPWMDuty (7, 0x40);
else if(P2RandIndex < 6 && P2RandIndex > 0)
SetPWMDuty (7, 0x80);
else if(P2RandIndex < 9 && P2RandIndex > 0)
SetPWMDuty(7, 0xc0);
else if(P2RandIndex < 12 && P2RandIndex > 0)
SetPWMDuty (7, Oxff);
else if(P2RandIndex == 0)
SetPWMDuty (7, 0x00);

// Next Green LED.

if(P2RandIndex < 15 && P2Randlndex >= 12)
SetPWMDuty(6, 0x40);

else if(P2RandIndex < 18 && P2RandlIndex >= 12)
SetPWMDuty(6, 0x80);

else if(P2RandIndex < 21 && P2RandlIndex >= 12)
SetPWMDuty(6, 0xc0);

else if(P2RandIndex < 24 && P2RandIndex >= 12)
SetPWMDuty (6, Oxff);

else if(P2RandIndex < 12)
SetPWMDuty(6, 0x00);

// Red LED.

if(P2RandIndex < 27 && P2RandIndex >= 24)
SetPWMDuty (5, 0x40);

else if(P2RandIndex < 30 && P2RandlIndex >= 24)
SetPWMDuty(5, 0x80);

else if(P2RandIndex < 33 && P2RandIndex >= 24)
SetPWMDuty(5, 0xc0);

else if(P2RandIndex < 36 && P2RandlIndex >= 24)

SetPWMDuty(5, Oxff);
else if(P2RandIndex < 24)
SetPWMDuty(5, 0x00);

// Blue LED.

if(P2RandIndex < 39 && P2Randlndex >= 36)
SetPWMDuty(4, 0x40);

else if(P2RandIndex < 42 && P2RandIndex >= 36)
SetPWMDuty(4, 0x80);

else if(P2RandIndex < 45 && P2RandlIndex >= 36)
SetPWMDuty(4, 0xc0);

else if(P2RandIndex < 36)
SetPWMDuty(4, 0x00);

else

SetPWMDuty (4, Oxff);

Player2State = P2State+l;
break;

// Now display the tens digit of the score.
case P2State+1: if(P2RandIndex < 10)
PlaceCharacter(*0", 0, 1, Ox3F, 280, 25);
else if(P2RandIndex < 20)
PlaceCharacter("1", 0, 1, Ox3F, 280, 25);
else if(P2RandIndex < 30)
PlaceCharacter("2", 0, 1, Ox3F, 280, 25);
else if(P2RandIndex < 40)
PlaceCharacter(*3", 0, 1, Ox3F, 280, 25);
else if(P2RandIndex < 50)
PlaceCharacter("4", 0, 1, Ox3F, 280, 25);
else
PlaceCharacter("5", 0, 1, Ox3F, 280, 25);

Player2State = P2State+2;
break;

// Now display the ones digit of the score.
case P2State+2: if(P2RandIndex < 10)
P2Temp = P2RandIndex+0x30;
else if(P2RandIndex < 20)
P2Temp = (P2RandIndex-10) + 0x30;
else if(P2RandIndex < 30)
P2Temp = (P2RandIndex-20) + 0x30;
else if(P2RandIndex < 40)
P2Temp = (P2RandIndex-30) + 0x30;
else if(P2RandIndex < 50)
P2Temp = (P2RandIndex-40) + 0x30;
else
P2Temp = 0x30;

PlaceCharacter(P2Temp, 0, 1, Ox3F, 290, 25);
Player2State = P2State+3;
break;

// Clear upper and lower boxes.
case P2State+3: ClearArea(0x00, 238, 64, 242, 68);
ClearArea(0x00, 238, 172, 242, 176);

Player2State = P2State+4;
break;

// Clear left and right boxes.
case P2State+4: ClearArea(0Ox00, 184, 118, 188, 122);
ClearArea(0Ox00, 292, 118, 296, 122);

P2RTI = 0;
Player2State = P2State+5;
break;

// Wait for player to not push any buttons.
case P2State+5: if(ContP2 == Oxff)
Player2State = P2State+6;
break;

// Determine color and location of box(es).

case P2State+6: P2CIndex++; // Increment color index to next color.
if(P2CIndex == 6) // 1f we raech six then roll over to zero.
P2CIndex = 0;

// Based on the random number determine what

// boxes we should draw in.

if(RandArray[P2RandIndex] == 0)
ClearArea(ColorArray[P2CIndex], 238, 64, 242, 68);

else if(RandArray[P2RandIndex] == 1)
ClearArea(ColorArray[P2CIndex], 238, 172, 242, 176);

else if(RandArray[P2RandIndex] == 2)

ClearArea(ColorArray[P2CIndex], 238, 64, 242, 68);
ClearArea(ColorArray[P2CIndex], 238, 172, 242, 176);

}

else if(RandArray[P2RandIndex] == 3)
ClearArea(ColorArray[P2CIndex], 184, 118, 188, 122);

else if(RandArray[P2RandIndex] == 4)
ClearArea(ColorArray[P2CIndex], 292, 118, 296, 122);

else if(RandArray[P2RandIndex] == 5)
{

ClearArea(ColorArray[P2CIndex], 184, 118, 188, 122);
ClearArea(ColorArray[P2CIndex], 292, 118, 296, 122);

Player2State = P2State+7;
break;

// Wait for user input.
case P2State+7: if(ContP2 == Oxff) // 1If user have input nothing.

Player2State = P2State+7;
break;

}
else if((ContP2 & START) == 0 || (ContP2 & SEL) == 0) // Check for start or select.
{

Player2State = Halt; // If we get a start or sel then
PlayerlState = Halt; // Halt both player SMs, the Music SM
MusicState = MSHalt; // and start the Select SM.
SelectState = SelStart;

break;

}

// Else check to see if what the user input was correct.

else if((ContP2 & UP) == 0 && RandArray[P2RandIndex] == 0)
P2Rand Index++;

else if((ContP2 & DOWN) == 0 && RandArray[P2RandIndex] == 1)
P2Rand Index++;

else if((ContP2 & B) == 0 && RandArray[P2RandIndex] == 2)
P2RandIndex++;

else if((ContP2 & LEFT) == 0 && RandArray[P2RandIndex] == 3)
P2Rand Index++;

else if((ContP2 & RIGHT) == 0 && RandArray[P2RandIndex] == 4)
P2Rand Index++;

else if((ContP2 & A) == 0 && RandArray[P2RandIndex] == 5)
P2Rand Index++;

// Else the input was incorrect so pay the penalty.
else
{
// Must go back a certain amount.
if(P2RandIndex < BACKAMOUNT)
P2RandIndex=0;
else
P2RandIndex -= BACKAMOUNT;

// Play an annoying sound to indicate mistake.
AnnoyingFlag = 1;

// See if we are done.

if(P2RandIndex == NUMOFRAND)

{
// Display the 50
PlaceCharacter("5", 0, 1, Ox3F, 280, 25);
PlaceCharacter("0", 0, 1, Ox3F, 290, 25);

// Display P2 WINS!!
for(P2Index=0;P2Index<9;P2Index++)
PlaceCharacter(P2WinString[P2Index], 0, 1, Ox2E, 121+(10*P2Index), 140);

// If we are then set the win flag and Halt.
WinFlag = 1;

Player2State Halt;

PlayeriState Halt;

SplashState = VeryEnd;

else
Player2State = P2State;

break;

// This is the Music State Machine. It will play the intro tune,
// the winning tune, the gameplay tune, and the annoying tune.

switch(MusicState)
{
// This is the state the SM starts up. Does nothing.
case Halt: MusicState = Halt;
break;

// This is the Halt state that any other state machine places
// this SM in. It will release the osc and then wait for the
// MGFlag (Music Go Flag) to be set.

case MSHalt: ReleaseOscillator(EO_Al); // Turns off the sound.
Musiclndex = 0O; // Clear the index.
NoteCounter = 0; // Clear the note counter.
MusicState = MSHalt+1; // Goto next state.
break;

case MSHalt+1: if(GMFlag) // If the Flag gets set

MusicState = MGState; // then play the Go Music.

break;

// This is the part where we play the intro music. It is the
// 2001 Intro tune.

case MIState: if(GMFlag) // Check to see if we should play
{ // Go Music.
ReleaseOscillator(EO_Al); // Turn off sound.
MusicState = MGState; // Play the Go Music.

break;

}
LoadPlayNote(EO_A1, IntroNote[Musiclndex]); // Play the next note.

SoundRTI = 0; // Clear the RTI counter.
MusicState = MIState+1; // Goto next state.
break;

case MIState+l: iT(SoundRTI == IntroDur[Musiclndex]) // Determine how long to play note.

// If we are done playing the note then
// determine if we should play another.
NoteCounter++;

if(NoteCounter == IntroNotes)

// 1f we are done playing notes then Halt.
MusicState = MSHalt; // Goto Halt state.
Musiclndex = 0; // Clear the music index.

else

// 1f we are not done then index then next note.
Musiclndex++; // Increment index to play next note.
MusicState = MIState; // Goto the state that will play next note.

}

// Else we are not done playing the note so
// increment the RTI counter.
else

SoundRTI++;

break;

// This is the portion of the state machine that will play
// the winning tune. It will play "We are the Champions."

case MWState: WinFlag = 0; // Clear the Flag that got us here.
LoadPlayNote(EO_Al,WinNote[Musiclndex]); // Play the next note.
SoundRTI = 0; // Clear RTI counter.
MusicState = MWState+1; // Goto next state.
break;
case MWState+1: if(SoundRTI == WinDur[Musiclndex]) // Determine how long we play note.
// If we are done playing note determine if we are done with tune.
NoteCounter++;
if(NoteCounter == WinNotes) // Determines if we are done with tune.
MusicState = MSHalt; // 1f we are then Halt.
Musiclndex = 0; // Reset the index that says what note to play.

else // Else we are not done with tune.

Musiclndex++; // Increment index to play the next tune.
MusicState = MWState; // Goto the state that plays next tune.
3
3
// Else we are not done playing note.
else
SoundRTI++; // Increment the RTI counter.
break;

// This is the state that will play the annoying sound when you
// make a mistake.

case MAState: WriteOneByteWMask(16, 7, 4); // Change to a square wave.
MusicState = MAState+1; // Goto next state.
break;
case MAState+1: LoadPlayNote(EO_A1,C2); // Play low note.
AnnoyingRTI = 0; // Clear Annoying RTI counter.
MusicState = MAState+2; // Goto next state.
break;
case MAState+2: if(AnnoyingRTI == 8) // Determine if we are done playing note.
WriteOneByteWMask(16, 7, 0); // If we are then change to sine wave.
MusicState = MGState; // Goto Game Music state.
AnnoyingFlag = 0; // Clear the flag that got us here.
3
// Else we are not done playing music so increment the RTI counter.
else

AnnoyingRTI++;

break;

// The is the Music Go state where we play the music that is
// heard during actual game play.

case MGState:

case MGState+1:

case MGState+2:

}

GMFlag = 0; // Clear the flag that got us here.
if(GNFlag) // Check to see which note we play.

LoadPlayNote(EO_A1,C5); // Play C5 note.
GNFlag = 0; // Change flag to play other note next time.

else

LoadPlayNote(EO_A1,C5s);// Play C5 sharp note.

GNFlag = 1; // Change flag to play other note next time.
¥
SoundRTI = 0; // Clear the RTI counter.
MusicState = MGState+1; // Goto next state.
break;

if(P1RandIndex > P2RandIndex) // Determine our duration based on the
GDur = P1RandIndex >> 1; // PRandlindexes. As the player get closer

else // to the end the duration gets shorter.
GDur = P2RandIndex >> 1;

GDur = 27 - GDur;
MusicState = MGState+2;

break;
if(SoundRTI == GDur) // Determine if we are done playing note.

MusicState = MGState; // If so then goto state that play the next note.
else // Else we are not done play the note

SoundRT1++; // so just increment the RTI counter.
if(AnnoyingFlag) // Check to see if we should play the annoying note.
{

MusicState = MAState;
3
else if(WinFlag)
{

MusicState = MWState; // Check if we should play the winning tune.

break;

// When we hit start or select then we get a menu to save and restore games.
// This is the state machine which controls that.

switch(SelectState)

// Halt state which just sits here and does nothing.

case Halt:

SelectState = Halt;
break;

// Start by displaying the Resume, Restore, and Save strings.

case SelStart:

ClearScreen(0x00);
for(SelIndex=0;Sel Index<6;Sel Index++)

PlaceCharacter(ResumeString[Sellndex], 0, 2, 0x3f, 90+(20*Sellndex), 80);
for(SelIndex=0;Sel Index<7;Sel Index++)

PlaceCharacter(RestoreString[SelIndex], 0, 2, 0x3f, 90+(20*Sellndex), 110);
for(Sel Index=0;Sel Index<4;Sel Index++)

PlaceCharacter(SaveString[Sellndex], 0, 2, O0x3f, 90+(20*Sellndex), 140);

Selvar = 0; // Clear the var that indicates out selection.
SelectState = SelStart+l; // Goto next state.

/*
// This is just for fun. Best to comment out later.
for(Sel Index=0;Sel Index<26;Sel Index++)

PlaceCharacter(RTOString[Sellndex], 0, 1, 0x37, 30+(10*Sellndex), 20);

// Draw ECE625 Spike Lab Logo.

WritePixel (0Ox06, FUNX, FUNY);

DrawLine(Ox1b, FUNX, FUNY-4, FUNX-2, FUNY-6);
DrawLine(Ox1lb, FUNX-2, FUNY-6, FUNX-10, FUNY-6);
DrawLine(Ox1lb, FUNX-10, FUNY-6, FUNX-14, FUNY-4);
DrawLine(Ox1lb, FUNX-14, FUNY-4, FUNX-14, FUNY+2);
DrawLine(Ox1b, FUNX-14, FUNY+2, FUNX-10, FUNY+6);
DrawLine(Ox1lb, FUNX-10, FUNY+6, FUNX-14, FUNY+26);
DrawLine(Ox1lb, FUNX-8, FUNY+26, FUNX, FUNY+6);
DrawLine(Ox1b, FUNX, FUNY+6, FUNX+8, FUNY+26);
DrawLine(Ox1lb, FUNX+14, FUNY+26, FUNX+10, FUNY+6);
DrawLine(Ox1b, FUNX+10, FUNY+6, FUNX+14, FUNY+2);
DrawLine(Ox1b, FUNX+14, FUNY+2, FUNX+14, FUNY-4);
DrawLine(Ox1lb, FUNX+14, FUNY-4, FUNX+10, FUNY-6);
DrawLine(Ox1lb, FUNX+10, FUNY-6, FUNX+2, FUNY-6);
DrawLine(Ox1b, FUNX+2, FUNY-6, FUNX, FUNY-4);

WritePixel (0x31, FUNX-4, FUNY+16);

WritePixel (0x31, FUNX-4, FUNY+17);

DrawLine(0Ox31, FUNX-3, FUNY+18, FUNX+3, FUNY+18);
DrawLine(0Ox31, FUNX+3, FUNY+18, FUNX+4, FUNY+16);
DrawLine(Ox31, FUNX, FUNY+18, FUNX, FUNY+17);

*/

break;

// Based on the value of Selvar place the cursor.

case SelStart+l: PlaceCharacter(® ", 0 , 1, Ox3f, 80, 83); // Clear all possible
PlaceCharacter(® ", 0 , 1, O0x3f, 80, 113); // cursor locations.
PlaceCharacter(® ", 0 , 1, 0x3f, 80, 143);

// Draw in the cursor in the correct place.
if(Selvar == 0)

PlaceCharacter("o", 0 , 1, 0x3f, 80, 83);
else if(Selvar == 1)

PlaceCharacter(“o", 0 , 1, 0x3f, 80, 113);
else if(Selvar == 2)

PlaceCharacter("o®, 0 , 1, 0x3f, 80, 143);

SelectState = SelStart+2;
break;

// Wait for user input.

case SelStart+2: if((ContP1 & DOWN) == 0 || (ContP2 & DOWN) == 0)
{
// 1f the user pushed down then increment
// the Selvar value if we can.
if(Selvar < 2)
SelVar++;
SelectState = SelStart+3;
}
else if((ContPl & UP) == 0 || (ContP2 & UP) == 0)
{
// If the user pushed up then decrement
// the Selvar value if we can.
if(Selvar > 0)
Selvar--;

SelectState = SelStart+3;
3

// If the user pushes start or A then execute

// whatever the cursor is pointing to.

else if((ContP1l & START) == 0 || (ContP2 & START) == 0)
SelectState = SelStart+4;

}

else if((ContPl & A) == 0 || (ContP2 & A) == 0)

SelectState = SelStart+4;

break;
// Next two state just wait for the user to stop pushing a
// button before moving on.
case SelStart+3: if(ContPl == Oxff && ContP2 == Oxff)
SelectState = SelStart+1;
break;
case SelStart+4: if(ContPl == Oxff && ContP2 == Oxff)
SelectState = SelStart+5;

break;

// Take action based on the value of Selvar.
case SelStart+5: if(Selvar == 0)

// 1t we sould resume then halt us. Depending
// on whether we have already started or not
// depends on where we start the Splash SM at.
SelectState = Halt;

if(Started)

SplashState = SState+4;
else

SplashState = SState;
break;

3

// Restore a previous game.
else if(Selvar == 1)

// Restore the Player Indexes and the RandArray.

P1RandIndex = ReadEEPROM(0x00);

P2RandIndex = ReadEEPROM(0x01);

for(Sel Index=0;Sel Index<NUMOFRAND; Sel Index++)
RandArray[SelIndex] = ReadEEPROM(2+Sellndex);

Loaded = 1;
3

// Save a game.
else if(Selvar == 2)

// Save the Player Indexes and the RandArray.

WriteEEPROM(0x00, P1RandlIndex);
WriteEEPROM(Ox01, P2RandIndex);
for(Sel Index=0;Sel Index<NUMOFRAND; Sel Index++)
WriteEEPROM(2+Sel Index, RandArray[Sellndex]);
3

SelRTI = 0; // Clear the RTI counter.
SelectState = SelStart+6;
break;

// Display a done string to let the user know that the action was completed.
case SelStart+6: for(Sellndex=0;Sellndex<4;Sellndex++)
PlaceCharacter(DoneString[Sellndex], 0, 2, 0x3f, 90+(20*Sellndex), 200);

SelectState = SelStart+7;
break;

// Display the string for 1 second.
case SelStart+7: if(SelRTI == 30)
{

ClearArea(0x00, 90, 200, 200, 220); // Clear the done.
SelectState = SelStart+1;
}

SelRTI++;
break;

}

return O;

